{"title":"TIR-YOLO-ADAS:先进驾驶辅助系统的热红外物体探测框架","authors":"Meng Ding, Song Guan, Hao Liu, Kuaikuai Yu","doi":"10.1049/itr2.12471","DOIUrl":null,"url":null,"abstract":"<p>An object detection framework using thermal infrared (TIR) cameras is proposed to meet the needs of an advanced driver assistance system (ADAS) operating at night-time and in low-visibility conditions. The proposed detection framework, referred to as TIR-YOLO-ADAS, is an improvement of YOLOX for TIR object detection in ADAS. First, to address the disadvantages of TIR objects, the part of the attention mechanism is designed to enhance the discriminative ability of feature maps in the spatial and channel dimensions. Second, a focal loss function is used as the confidence loss function to enable the framework to focus on detection tasks of difficult, misclassified targets in the process of network training. The results of the ablation experiment on the Forward-looking infrared (FLIR) thermal ADAS dataset indicate that the proposed framework significantly improves the performance of TIR object detection. Comparative experimental results further show that TIR-YOLO-ADAS performs favourably when compared with three representative detection algorithms. To evaluate the practicality and feasibility of the proposed framework in various applications, a qualitative assessment in real road scenarios was conducted. The experimental results confirm that the proposed framework performs promisingly and could be integrated into vehicle platforms as an ADAS module.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12471","citationCount":"0","resultStr":"{\"title\":\"TIR-YOLO-ADAS: A thermal infrared object detection framework for advanced driver assistance systems\",\"authors\":\"Meng Ding, Song Guan, Hao Liu, Kuaikuai Yu\",\"doi\":\"10.1049/itr2.12471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An object detection framework using thermal infrared (TIR) cameras is proposed to meet the needs of an advanced driver assistance system (ADAS) operating at night-time and in low-visibility conditions. The proposed detection framework, referred to as TIR-YOLO-ADAS, is an improvement of YOLOX for TIR object detection in ADAS. First, to address the disadvantages of TIR objects, the part of the attention mechanism is designed to enhance the discriminative ability of feature maps in the spatial and channel dimensions. Second, a focal loss function is used as the confidence loss function to enable the framework to focus on detection tasks of difficult, misclassified targets in the process of network training. The results of the ablation experiment on the Forward-looking infrared (FLIR) thermal ADAS dataset indicate that the proposed framework significantly improves the performance of TIR object detection. Comparative experimental results further show that TIR-YOLO-ADAS performs favourably when compared with three representative detection algorithms. To evaluate the practicality and feasibility of the proposed framework in various applications, a qualitative assessment in real road scenarios was conducted. The experimental results confirm that the proposed framework performs promisingly and could be integrated into vehicle platforms as an ADAS module.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12471\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12471\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12471","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
TIR-YOLO-ADAS: A thermal infrared object detection framework for advanced driver assistance systems
An object detection framework using thermal infrared (TIR) cameras is proposed to meet the needs of an advanced driver assistance system (ADAS) operating at night-time and in low-visibility conditions. The proposed detection framework, referred to as TIR-YOLO-ADAS, is an improvement of YOLOX for TIR object detection in ADAS. First, to address the disadvantages of TIR objects, the part of the attention mechanism is designed to enhance the discriminative ability of feature maps in the spatial and channel dimensions. Second, a focal loss function is used as the confidence loss function to enable the framework to focus on detection tasks of difficult, misclassified targets in the process of network training. The results of the ablation experiment on the Forward-looking infrared (FLIR) thermal ADAS dataset indicate that the proposed framework significantly improves the performance of TIR object detection. Comparative experimental results further show that TIR-YOLO-ADAS performs favourably when compared with three representative detection algorithms. To evaluate the practicality and feasibility of the proposed framework in various applications, a qualitative assessment in real road scenarios was conducted. The experimental results confirm that the proposed framework performs promisingly and could be integrated into vehicle platforms as an ADAS module.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf