二氧化硅对 rGO/Fe3O4 作为氧还原电催化剂的电催化性能的影响

F. Yusoff, Karthi Suresh
{"title":"二氧化硅对 rGO/Fe3O4 作为氧还原电催化剂的电催化性能的影响","authors":"F. Yusoff, Karthi Suresh","doi":"10.4028/p-XRDbR5","DOIUrl":null,"url":null,"abstract":"In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"65 16","pages":"143 - 149"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Silica Dioxide in the Electrocatalytic Performances of rGO/Fe3O4 as Oxygen Reduction Electrocatalyst\",\"authors\":\"F. Yusoff, Karthi Suresh\",\"doi\":\"10.4028/p-XRDbR5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.\",\"PeriodicalId\":21754,\"journal\":{\"name\":\"Solid State Phenomena\",\"volume\":\"65 16\",\"pages\":\"143 - 149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-XRDbR5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-XRDbR5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过简便的化学工艺合成了还原氧化石墨烯-氧化铁-二氧化硅(rGO/Fe3O4/SiO2)。傅立叶变换红外光谱(FTIR)证实了 rGO/Fe3O4/SiO2 光谱中二氧化硅峰的存在,而 RAMAN 则显示了所研究的碳材料的振动带。扫描电子显微镜(SEM-EDX)和透射电子显微镜(TEM)的结果证实了二氧化硅在 rGO/Fe3O4 纳米复合材料上的统一,但形态结构有所不同。X 射线衍射(XRD)分析表明,加入 SiO2 增加了纳米复合材料的结晶尺寸。氮吸附等温线分析表明纳米复合材料属于中孔区。然后将纳米复合材料滴铸在玻璃碳电极(GCE)表面,制成电极,并命名为 rGO/Fe3O4/SiO2/GCE。利用电子阻抗光谱(EIS)研究了改性电极的电化学特性,结果显示电荷转移的电阻最小。氧还原反应分析表明,使用 Randles-Sevcik 方程计算,氧的电催化还原效果极佳,有四个电子转移。所有分析均与未添加氧化硅的纳米复合材料(rGO/Fe3O4)进行了比较。这项工作证明,在作为基质的化合物中添加纳米粒子可提高 rGO/Fe3O4/SiO2/GCE 复合材料的氧还原电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Influence of Silica Dioxide in the Electrocatalytic Performances of rGO/Fe3O4 as Oxygen Reduction Electrocatalyst
In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Thermostamping Simulation of a Carbon Fiber-Reinforced PAEK Composite Stringer Effects of Sn on Corrosion Resistance of Rare-Earth-Free Mg-2Zn Alloy TiO2- Polyurethane Cocopol Blend Nanocomposites as an Anticorrosion Coating for Mild Steel Tribological Properties of Spark Plasma Sintered Ti48Al48Cr2Nb2 Alloy Investigation of the Mechanical Properties of Urethane Dimethacrylate (UDMA) Reinforced with Abaca Cellulose for Vat Photopolymerization (VP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1