{"title":"FSO 通信系统中大气湍流条件下 PSK 和 ASK 调制技术的性能研究","authors":"Esraa Al – Gazzi, Ekbal Ali, Assel Mohammed","doi":"10.30684/etj.2023.143196.1567","DOIUrl":null,"url":null,"abstract":"downtime can be reduced because of the quick advancement of high-speed connection technology. It is also now possible to quickly establish a backup network in an emergency or crisis. The design of FSO systems for two types of digital modulation techniques is the primary focus of this work. An examination of the FSO link's performance in various channel conditions using various modulation techniques is conducted. This analytical mechanism can aid a modulation strategy for various channel conditions. The results indicated that PSK modification is stronger against atmospheric turbulence than ASK modification in terms of quality factor and signal-to-noise ratio (SNR). In addition, the values of received power, quality factor, and signal-to-noise ratio were higher in the case of atmospheric turbulence during rain than in the case of fog, followed by dust conditions. The systems can operate using adaptive optics and evaluate the system's performance in the presence of atmospheric turbulence in terms of signal quality, received power, and signal-to-noise ratio.","PeriodicalId":11630,"journal":{"name":"Engineering and Technology Journal","volume":"56 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performances Study of PSK and ASK Modulation Technique under Atmospheric Turbulence in FSO Communication System\",\"authors\":\"Esraa Al – Gazzi, Ekbal Ali, Assel Mohammed\",\"doi\":\"10.30684/etj.2023.143196.1567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"downtime can be reduced because of the quick advancement of high-speed connection technology. It is also now possible to quickly establish a backup network in an emergency or crisis. The design of FSO systems for two types of digital modulation techniques is the primary focus of this work. An examination of the FSO link's performance in various channel conditions using various modulation techniques is conducted. This analytical mechanism can aid a modulation strategy for various channel conditions. The results indicated that PSK modification is stronger against atmospheric turbulence than ASK modification in terms of quality factor and signal-to-noise ratio (SNR). In addition, the values of received power, quality factor, and signal-to-noise ratio were higher in the case of atmospheric turbulence during rain than in the case of fog, followed by dust conditions. The systems can operate using adaptive optics and evaluate the system's performance in the presence of atmospheric turbulence in terms of signal quality, received power, and signal-to-noise ratio.\",\"PeriodicalId\":11630,\"journal\":{\"name\":\"Engineering and Technology Journal\",\"volume\":\"56 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30684/etj.2023.143196.1567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2023.143196.1567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performances Study of PSK and ASK Modulation Technique under Atmospheric Turbulence in FSO Communication System
downtime can be reduced because of the quick advancement of high-speed connection technology. It is also now possible to quickly establish a backup network in an emergency or crisis. The design of FSO systems for two types of digital modulation techniques is the primary focus of this work. An examination of the FSO link's performance in various channel conditions using various modulation techniques is conducted. This analytical mechanism can aid a modulation strategy for various channel conditions. The results indicated that PSK modification is stronger against atmospheric turbulence than ASK modification in terms of quality factor and signal-to-noise ratio (SNR). In addition, the values of received power, quality factor, and signal-to-noise ratio were higher in the case of atmospheric turbulence during rain than in the case of fog, followed by dust conditions. The systems can operate using adaptive optics and evaluate the system's performance in the presence of atmospheric turbulence in terms of signal quality, received power, and signal-to-noise ratio.