Haipeng Zhao, Yin Liu, Shengguo Yang, Chenfang Lin, Mingxing Chen, Kai Braun, Xinyi Luo, Siyu Li, Anlian Pan, Xiao Wang
{"title":"单层 1T'-MoTe2 的微观生长机制和边缘状态","authors":"Haipeng Zhao, Yin Liu, Shengguo Yang, Chenfang Lin, Mingxing Chen, Kai Braun, Xinyi Luo, Siyu Li, Anlian Pan, Xiao Wang","doi":"10.1088/1674-1056/ad16d5","DOIUrl":null,"url":null,"abstract":"\n Transition metal ditellurides (TMTDs) have versatile physical properties, including non-trivial topology, Weyl semimetal states and unique spin texture. Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications. Here, we demonstrate the epitaxial growth of 1T'-MoTe2 on Au (111) and graphitized silicon carbide (Gr/SiC) by molecular beam epitaxy (MBE). We investigated the morphology of the grown 1T'-MoTe2 at the atomic level by scanning tunnelling microscopy (STM) and revealed the corresponding microscopic growth mechanism. We found that the unique ordered Te structures preferentially deposited on Au (111) regulated the growth of monolayer single crystal 1T'-MoTe2, while the Mo nucleation sites deposited on Gr/SiC substrate firstly instead of Te structures impeded the ordered growth of monolayer MoTe2. We confirm that the size of single crystal 1T'-MoTe2 grown on Au (111) is nearly two orders of magnitude larger than that on Gr/SiC. By scanning tunnelling spectroscopy (STS), We observe that the STS spectrum of the monolayer 1T'-MoTe2 nano-island at the edge is different from that at the interior, which exhibits enhanced conductivity.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"113 41","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2\",\"authors\":\"Haipeng Zhao, Yin Liu, Shengguo Yang, Chenfang Lin, Mingxing Chen, Kai Braun, Xinyi Luo, Siyu Li, Anlian Pan, Xiao Wang\",\"doi\":\"10.1088/1674-1056/ad16d5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Transition metal ditellurides (TMTDs) have versatile physical properties, including non-trivial topology, Weyl semimetal states and unique spin texture. Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications. Here, we demonstrate the epitaxial growth of 1T'-MoTe2 on Au (111) and graphitized silicon carbide (Gr/SiC) by molecular beam epitaxy (MBE). We investigated the morphology of the grown 1T'-MoTe2 at the atomic level by scanning tunnelling microscopy (STM) and revealed the corresponding microscopic growth mechanism. We found that the unique ordered Te structures preferentially deposited on Au (111) regulated the growth of monolayer single crystal 1T'-MoTe2, while the Mo nucleation sites deposited on Gr/SiC substrate firstly instead of Te structures impeded the ordered growth of monolayer MoTe2. We confirm that the size of single crystal 1T'-MoTe2 grown on Au (111) is nearly two orders of magnitude larger than that on Gr/SiC. By scanning tunnelling spectroscopy (STS), We observe that the STS spectrum of the monolayer 1T'-MoTe2 nano-island at the edge is different from that at the interior, which exhibits enhanced conductivity.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"113 41\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad16d5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad16d5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
过渡金属二碲化物(TMTDs)具有多种物理特性,包括非三维拓扑结构、韦尔半金属态和独特的自旋纹理。控制高质量、大规模、具有优选晶相的单层 TMTDs 的生长对其应用至关重要。在这里,我们展示了通过分子束外延(MBE)技术在金(111)和石墨化碳化硅(Gr/SiC)上外延生长 1T'-MoTe2 的过程。我们利用扫描隧道显微镜(STM)在原子水平上研究了生长出的 1T'-MoTe2 的形貌,并揭示了相应的微观生长机制。我们发现,优先沉积在金(111)上的独特有序 Te 结构调节了单层单晶 1T'-MoTe2 的生长,而首先沉积在 Gr/SiC 衬底上的 Mo 成核点而不是 Te 结构阻碍了单层 MoTe2 的有序生长。我们证实,生长在金(111)上的单晶 1T'-MoTe2 的尺寸比生长在 Gr/SiC 上的单晶 1T'-MoTe2 大近两个数量级。通过扫描隧穿光谱(STS),我们观察到单层 1T'-MoTe2 纳米岛边缘的 STS 光谱与内部不同,其导电性增强。
Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2
Transition metal ditellurides (TMTDs) have versatile physical properties, including non-trivial topology, Weyl semimetal states and unique spin texture. Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications. Here, we demonstrate the epitaxial growth of 1T'-MoTe2 on Au (111) and graphitized silicon carbide (Gr/SiC) by molecular beam epitaxy (MBE). We investigated the morphology of the grown 1T'-MoTe2 at the atomic level by scanning tunnelling microscopy (STM) and revealed the corresponding microscopic growth mechanism. We found that the unique ordered Te structures preferentially deposited on Au (111) regulated the growth of monolayer single crystal 1T'-MoTe2, while the Mo nucleation sites deposited on Gr/SiC substrate firstly instead of Te structures impeded the ordered growth of monolayer MoTe2. We confirm that the size of single crystal 1T'-MoTe2 grown on Au (111) is nearly two orders of magnitude larger than that on Gr/SiC. By scanning tunnelling spectroscopy (STS), We observe that the STS spectrum of the monolayer 1T'-MoTe2 nano-island at the edge is different from that at the interior, which exhibits enhanced conductivity.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.