{"title":"养分信用交易对城市雨水部门遵守最大日负荷总量的作用:来自弗吉尼亚州市政独立暴雨系统的证据","authors":"William N. Ferris, Kurt Stephenson","doi":"10.1111/1752-1688.13176","DOIUrl":null,"url":null,"abstract":"<p>Water quality credit trading has been advanced as a cost-effective means of achieving regulatory compliance. However, the volume of trading activity in operational programs is typically less than estimated by empirical analysis. The compliance behavior of Virginia Municipal Separate Storm Sewer Systems (MS4s) is studied in response to the Chesapeake Bay total maximum daily load (TMDL) to understand the circumstances in which trading is adopted, the extent to which trading is adopted, and the factors contributing to trading's use or nonuse. Results indicate that MS4s generally prefer to install their own pollutant control measures rather than trade. Many MS4s, however, rely on trade as a backup compliance option. MS4s favor bay compliance options that help meet other local management objectives (erosion control, infrastructure protection, and reductions toward local water quality objectives) and provide long term pollutant control benefits. Low cost term credits do not provide such benefits. For perpetual credits, MS4s use a variety of strategies to substantially reduce the cost differences between trade and nontrade compliance options.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"392-405"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13176","citationCount":"0","resultStr":"{\"title\":\"The role of nutrient credit trading for total maximum daily load compliance by the urban stormwater sector: Evidence from Virginia's Municipal Separate Storm Sewer Systems\",\"authors\":\"William N. Ferris, Kurt Stephenson\",\"doi\":\"10.1111/1752-1688.13176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water quality credit trading has been advanced as a cost-effective means of achieving regulatory compliance. However, the volume of trading activity in operational programs is typically less than estimated by empirical analysis. The compliance behavior of Virginia Municipal Separate Storm Sewer Systems (MS4s) is studied in response to the Chesapeake Bay total maximum daily load (TMDL) to understand the circumstances in which trading is adopted, the extent to which trading is adopted, and the factors contributing to trading's use or nonuse. Results indicate that MS4s generally prefer to install their own pollutant control measures rather than trade. Many MS4s, however, rely on trade as a backup compliance option. MS4s favor bay compliance options that help meet other local management objectives (erosion control, infrastructure protection, and reductions toward local water quality objectives) and provide long term pollutant control benefits. Low cost term credits do not provide such benefits. For perpetual credits, MS4s use a variety of strategies to substantially reduce the cost differences between trade and nontrade compliance options.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"60 2\",\"pages\":\"392-405\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13176\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13176","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The role of nutrient credit trading for total maximum daily load compliance by the urban stormwater sector: Evidence from Virginia's Municipal Separate Storm Sewer Systems
Water quality credit trading has been advanced as a cost-effective means of achieving regulatory compliance. However, the volume of trading activity in operational programs is typically less than estimated by empirical analysis. The compliance behavior of Virginia Municipal Separate Storm Sewer Systems (MS4s) is studied in response to the Chesapeake Bay total maximum daily load (TMDL) to understand the circumstances in which trading is adopted, the extent to which trading is adopted, and the factors contributing to trading's use or nonuse. Results indicate that MS4s generally prefer to install their own pollutant control measures rather than trade. Many MS4s, however, rely on trade as a backup compliance option. MS4s favor bay compliance options that help meet other local management objectives (erosion control, infrastructure protection, and reductions toward local water quality objectives) and provide long term pollutant control benefits. Low cost term credits do not provide such benefits. For perpetual credits, MS4s use a variety of strategies to substantially reduce the cost differences between trade and nontrade compliance options.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.