Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu
{"title":"具有耦合磁滞和蠕变效应的压电致动器的分数阶建模","authors":"Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu","doi":"10.3390/fractalfract8010003","DOIUrl":null,"url":null,"abstract":"A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 7","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional-Order Modeling of Piezoelectric Actuators with Coupled Hysteresis and Creep Effects\",\"authors\":\"Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu\",\"doi\":\"10.3390/fractalfract8010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8010003\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8010003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fractional-Order Modeling of Piezoelectric Actuators with Coupled Hysteresis and Creep Effects
A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.