潜在植物生长促进细菌的特性及其对小麦生长促进(Triticum aestivum)和土壤特性的影响

IF 2.1 Q3 MICROBIOLOGY Microbiology Research Pub Date : 2023-12-19 DOI:10.3390/microbiolres15010002
E. Voronina, Ekaterina Sokolova, Irina Tromenschleger, Olga Mishukova, Inna Hlistun, Matvei Miroshnik, Oleg Savenkov, Maria Buyanova, Ilya Ivanov, Maria R. Galyamova, Natalya Smirnova
{"title":"潜在植物生长促进细菌的特性及其对小麦生长促进(Triticum aestivum)和土壤特性的影响","authors":"E. Voronina, Ekaterina Sokolova, Irina Tromenschleger, Olga Mishukova, Inna Hlistun, Matvei Miroshnik, Oleg Savenkov, Maria Buyanova, Ilya Ivanov, Maria R. Galyamova, Natalya Smirnova","doi":"10.3390/microbiolres15010002","DOIUrl":null,"url":null,"abstract":"Plant-growth-promoting bacteria are an important economic and environmental resource as biofertilizers that can stimulate plant growth and improve agricultural yields. In this study, potential plant growth-promoting bacteria were isolated from soil samples collected in Russia. Strains that manifested active growth on a nitrogen-free medium, the Pikovskaya medium (with insoluble phosphates) and CAS (Chrome Azurol S) agar, were selected for the study. All bacterial isolates were identified by 16S rRNA gene sequencing analysis. Seventeen bacterial isolates of different species were purified and quantified for their ability to grow on nitrogen-free media; dissolve phosphate; and produce ammonium, indole-3-acetic acid, siderophores, and antifungicidal agents. Principal component analysis identified three groups of strains: one with the maximum signs of providing “plant nutrition”; one with signs of “antimicrobial activity”; and a group “without outstanding signs”. All 17 strains were involved in experiments involving growing inoculated wheat seeds (Triticum aestivum) in pots under natural environmental conditions, and were assessed by their effect on the wheat growth and yield as well as on the chemical composition of the soil. For the “plant nutrition” group, regression analysis revealed a connection between indicators of plant growth, ear length, and ammonium accumulation in the soil. However, in other groups, there were also strains showing a positive effect on plant growth, which suggests the necessity of involving additional factors to predict the ability of strains to affect plants when screened in the laboratory.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":" 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Potential Plant-Growth-Promoting Bacteria and Their Effect on Wheat Growth Promotion (Triticum aestivum) and Soil Characteristics\",\"authors\":\"E. Voronina, Ekaterina Sokolova, Irina Tromenschleger, Olga Mishukova, Inna Hlistun, Matvei Miroshnik, Oleg Savenkov, Maria Buyanova, Ilya Ivanov, Maria R. Galyamova, Natalya Smirnova\",\"doi\":\"10.3390/microbiolres15010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant-growth-promoting bacteria are an important economic and environmental resource as biofertilizers that can stimulate plant growth and improve agricultural yields. In this study, potential plant growth-promoting bacteria were isolated from soil samples collected in Russia. Strains that manifested active growth on a nitrogen-free medium, the Pikovskaya medium (with insoluble phosphates) and CAS (Chrome Azurol S) agar, were selected for the study. All bacterial isolates were identified by 16S rRNA gene sequencing analysis. Seventeen bacterial isolates of different species were purified and quantified for their ability to grow on nitrogen-free media; dissolve phosphate; and produce ammonium, indole-3-acetic acid, siderophores, and antifungicidal agents. Principal component analysis identified three groups of strains: one with the maximum signs of providing “plant nutrition”; one with signs of “antimicrobial activity”; and a group “without outstanding signs”. All 17 strains were involved in experiments involving growing inoculated wheat seeds (Triticum aestivum) in pots under natural environmental conditions, and were assessed by their effect on the wheat growth and yield as well as on the chemical composition of the soil. For the “plant nutrition” group, regression analysis revealed a connection between indicators of plant growth, ear length, and ammonium accumulation in the soil. However, in other groups, there were also strains showing a positive effect on plant growth, which suggests the necessity of involving additional factors to predict the ability of strains to affect plants when screened in the laboratory.\",\"PeriodicalId\":43788,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres15010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres15010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物生长促进细菌是一种重要的经济和环境资源,可作为生物肥料刺激植物生长,提高农业产量。本研究从俄罗斯采集的土壤样本中分离出了潜在的植物生长促进细菌。研究选择了在无氮培养基、Pikovskaya 培养基(含不溶性磷酸盐)和 CAS(Chrome Azurol S)琼脂上生长活跃的菌株。所有细菌分离物都通过 16S rRNA 基因测序分析进行了鉴定。纯化了 17 个不同种类的细菌分离物,并对其在无氮培养基上的生长能力、溶解磷酸盐的能力、产生铵、吲哚-3-乙酸、嗜苷酸和抗真菌剂的能力进行了量化。主成分分析确定了三组菌株:一组具有提供 "植物营养 "的最大迹象;一组具有 "抗菌活性 "迹象;还有一组 "无突出迹象"。所有 17 种菌株都参与了在自然环境条件下盆栽接种小麦种子(Triticum aestivum)的实验,并通过它们对小麦生长和产量以及土壤化学成分的影响进行了评估。就 "植物营养 "组而言,回归分析表明,植物生长指标、穗长和土壤中的铵积累之间存在联系。不过,在其他组别中,也有一些菌株对植物生长有积极影响,这表明在实验室筛选菌株时,有必要考虑其他因素来预测菌株对植物的影响能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Properties of Potential Plant-Growth-Promoting Bacteria and Their Effect on Wheat Growth Promotion (Triticum aestivum) and Soil Characteristics
Plant-growth-promoting bacteria are an important economic and environmental resource as biofertilizers that can stimulate plant growth and improve agricultural yields. In this study, potential plant growth-promoting bacteria were isolated from soil samples collected in Russia. Strains that manifested active growth on a nitrogen-free medium, the Pikovskaya medium (with insoluble phosphates) and CAS (Chrome Azurol S) agar, were selected for the study. All bacterial isolates were identified by 16S rRNA gene sequencing analysis. Seventeen bacterial isolates of different species were purified and quantified for their ability to grow on nitrogen-free media; dissolve phosphate; and produce ammonium, indole-3-acetic acid, siderophores, and antifungicidal agents. Principal component analysis identified three groups of strains: one with the maximum signs of providing “plant nutrition”; one with signs of “antimicrobial activity”; and a group “without outstanding signs”. All 17 strains were involved in experiments involving growing inoculated wheat seeds (Triticum aestivum) in pots under natural environmental conditions, and were assessed by their effect on the wheat growth and yield as well as on the chemical composition of the soil. For the “plant nutrition” group, regression analysis revealed a connection between indicators of plant growth, ear length, and ammonium accumulation in the soil. However, in other groups, there were also strains showing a positive effect on plant growth, which suggests the necessity of involving additional factors to predict the ability of strains to affect plants when screened in the laboratory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology Research
Microbiology Research MICROBIOLOGY-
CiteScore
1.90
自引率
6.70%
发文量
62
审稿时长
10 weeks
期刊介绍: Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.
期刊最新文献
Updates on Staphylococcal Vaccines Assess the Diagnostic Accuracy of GeneXpert to Detect Mycobacterium tuberculosis and Rifampicin-Resistant Tuberculosis among Presumptive Tuberculosis and Presumptive Drug Resistant Tuberculosis Patients Genome Sequence and Characterisation of Peribacillus sp. Strain AS_2, a Bacterial Endophyte Isolated from Alectra sessiliflora Biodegradation of Free Cyanide by a New Isolated Alkaliphilic Bacillus licheniformis Strain Bioactive Diepoxy Metabolites and Highly Oxygenated Triterpenoids from Marine and Plant-Derived Bacteria and Fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1