Tara Joy Massad, André Rangel Nascimento, Diego Fernando Campos Moreno, W. Simbaña, Humberto Garcia Lopez, Lidia Sulca, C. Lepesqueur, Lora A. Richards, M. Forister, J. O. Stireman, E. Tepe, Kathryn A. Uckele, Laura Braga, Thomas R. Walla, Angela M. Smilanich, Ari J. Grele, L. Dyer
{"title":"新热带地区食草动物的地方和区域决定因素的强度差异","authors":"Tara Joy Massad, André Rangel Nascimento, Diego Fernando Campos Moreno, W. Simbaña, Humberto Garcia Lopez, Lidia Sulca, C. Lepesqueur, Lora A. Richards, M. Forister, J. O. Stireman, E. Tepe, Kathryn A. Uckele, Laura Braga, Thomas R. Walla, Angela M. Smilanich, Ari J. Grele, L. Dyer","doi":"10.1111/oik.10218","DOIUrl":null,"url":null,"abstract":"Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, and Piper species richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximum Piper richness explained the positive skew in herbivory at the local scale (plot level) better for assemblages of Piper congeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":" 40","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in the strength of local and regional determinants of herbivory across the Neotropics\",\"authors\":\"Tara Joy Massad, André Rangel Nascimento, Diego Fernando Campos Moreno, W. Simbaña, Humberto Garcia Lopez, Lidia Sulca, C. Lepesqueur, Lora A. Richards, M. Forister, J. O. Stireman, E. Tepe, Kathryn A. Uckele, Laura Braga, Thomas R. Walla, Angela M. Smilanich, Ari J. Grele, L. Dyer\",\"doi\":\"10.1111/oik.10218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, and Piper species richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximum Piper richness explained the positive skew in herbivory at the local scale (plot level) better for assemblages of Piper congeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\" 40\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10218\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10218","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Variation in the strength of local and regional determinants of herbivory across the Neotropics
Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, and Piper species richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximum Piper richness explained the positive skew in herbivory at the local scale (plot level) better for assemblages of Piper congeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.