V. Escobedo, Rodrigo S. Ríos, C. Salgado‐Luarte, E. Gianoli
{"title":"可塑性与干旱和遮荫的相关性:对旱地环境生态位重叠的影响","authors":"V. Escobedo, Rodrigo S. Ríos, C. Salgado‐Luarte, E. Gianoli","doi":"10.1111/oik.09766","DOIUrl":null,"url":null,"abstract":"Phenotypic plasticity can increase the extent of the environmental gradient occupied by a species (niche breadth) and modify the portion of niche space shared among co‐occurring species (niche overlap). Thus, phenotypic plasticity may play a role in community assembly processes. Given that plants deal with a multivariate environment, and that functional traits are often correlated, plastic responses to different environmental factors are likely correlated. However, the implications of correlations of plasticities for niche overlap remain unexplored. Here, we present and evaluate a conceptual framework that links correlations of plasticities and niche overlap patterns among co‐occurring plant species. We specifically tested in an arid shrubland whether positive, negative, or null correlations between plasticity to light and water availability would be associated with patterns of high, low, or random niche overlap, respectively. Field data identified light and water availability as key factors shaping herbaceous plant community structure. We estimated species' niche breadth and niche overlap using two‐dimensional kernel–density estimations (NOK) and standardised effect sizes of Pianka's niche overlap index (OSES). We measured phenotypic plasticity to light and water availability in the six most abundant species in a greenhouse experiment. We used the plasticity index (PI) to test 1) the relationship between plasticity to light and water availability, and 2) the association between overall plasticity (average PI across traits) and niche breadth. We found a positive relationship between plasticity to light and water availability. Increased overall plasticity was associated with a broader niche breadth. Both NOK and OSES estimations indicated a significant niche overlap pattern. Results supported one of the predictions of our conceptual framework: that a positive correlation of plasticities would lead to increased niche overlap. The verified conceptual framework broadens our understanding of the role of phenotypic plasticity in plant community coexistence.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":" 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of plasticities to drought and shade: implications for environmental niche overlap in drylands\",\"authors\":\"V. Escobedo, Rodrigo S. Ríos, C. Salgado‐Luarte, E. Gianoli\",\"doi\":\"10.1111/oik.09766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenotypic plasticity can increase the extent of the environmental gradient occupied by a species (niche breadth) and modify the portion of niche space shared among co‐occurring species (niche overlap). Thus, phenotypic plasticity may play a role in community assembly processes. Given that plants deal with a multivariate environment, and that functional traits are often correlated, plastic responses to different environmental factors are likely correlated. However, the implications of correlations of plasticities for niche overlap remain unexplored. Here, we present and evaluate a conceptual framework that links correlations of plasticities and niche overlap patterns among co‐occurring plant species. We specifically tested in an arid shrubland whether positive, negative, or null correlations between plasticity to light and water availability would be associated with patterns of high, low, or random niche overlap, respectively. Field data identified light and water availability as key factors shaping herbaceous plant community structure. We estimated species' niche breadth and niche overlap using two‐dimensional kernel–density estimations (NOK) and standardised effect sizes of Pianka's niche overlap index (OSES). We measured phenotypic plasticity to light and water availability in the six most abundant species in a greenhouse experiment. We used the plasticity index (PI) to test 1) the relationship between plasticity to light and water availability, and 2) the association between overall plasticity (average PI across traits) and niche breadth. We found a positive relationship between plasticity to light and water availability. Increased overall plasticity was associated with a broader niche breadth. Both NOK and OSES estimations indicated a significant niche overlap pattern. Results supported one of the predictions of our conceptual framework: that a positive correlation of plasticities would lead to increased niche overlap. The verified conceptual framework broadens our understanding of the role of phenotypic plasticity in plant community coexistence.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.09766\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.09766","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Correlation of plasticities to drought and shade: implications for environmental niche overlap in drylands
Phenotypic plasticity can increase the extent of the environmental gradient occupied by a species (niche breadth) and modify the portion of niche space shared among co‐occurring species (niche overlap). Thus, phenotypic plasticity may play a role in community assembly processes. Given that plants deal with a multivariate environment, and that functional traits are often correlated, plastic responses to different environmental factors are likely correlated. However, the implications of correlations of plasticities for niche overlap remain unexplored. Here, we present and evaluate a conceptual framework that links correlations of plasticities and niche overlap patterns among co‐occurring plant species. We specifically tested in an arid shrubland whether positive, negative, or null correlations between plasticity to light and water availability would be associated with patterns of high, low, or random niche overlap, respectively. Field data identified light and water availability as key factors shaping herbaceous plant community structure. We estimated species' niche breadth and niche overlap using two‐dimensional kernel–density estimations (NOK) and standardised effect sizes of Pianka's niche overlap index (OSES). We measured phenotypic plasticity to light and water availability in the six most abundant species in a greenhouse experiment. We used the plasticity index (PI) to test 1) the relationship between plasticity to light and water availability, and 2) the association between overall plasticity (average PI across traits) and niche breadth. We found a positive relationship between plasticity to light and water availability. Increased overall plasticity was associated with a broader niche breadth. Both NOK and OSES estimations indicated a significant niche overlap pattern. Results supported one of the predictions of our conceptual framework: that a positive correlation of plasticities would lead to increased niche overlap. The verified conceptual framework broadens our understanding of the role of phenotypic plasticity in plant community coexistence.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.