光刻对准中任意选择标记图案的准确识别研究

RuiLin Yang, Feng Xu, YanLi Li, Yi Cao, Fan Zhang, Biao Liu, Shilin Ming
{"title":"光刻对准中任意选择标记图案的准确识别研究","authors":"RuiLin Yang, Feng Xu, YanLi Li, Yi Cao, Fan Zhang, Biao Liu, Shilin Ming","doi":"10.1117/12.3007831","DOIUrl":null,"url":null,"abstract":"The alignment of mask and wafer is a very important step in the process of lithography. When a specific pattern in the exposure image is selected as the alignment mark, the traditional automatic alignment methods which are based pre-set markers and image processing are not suitable. To address this issue, we propose a novel accurate image recognition method for arbitrarily selected mark patterns, which combines Support Vector Machine (SVM) with feature extraction to achieve adaptive switching of alignment templates. Firstly, based on the distinct linear contour features of silicon wafer exposure patterns, which lack color and texture characteristics, we extract Histogram of Oriented Gradients (HOG) features from the images to construct feature vectors ; then, we select the optimal SVM kernel function through experimental comparisons, and select regions of interest on silicon wafer exposure images for testing ; finally, we utilize HU-based shape features for secondary matching and recognition decisions. The experimental results demonstrate that the proposed method achieves a recognition accuracy of 100%, enabling the implementation of adaptive alignment template selection and switching.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on accurate recognition of arbitrarily selected mark patterns in alignment of lithography\",\"authors\":\"RuiLin Yang, Feng Xu, YanLi Li, Yi Cao, Fan Zhang, Biao Liu, Shilin Ming\",\"doi\":\"10.1117/12.3007831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The alignment of mask and wafer is a very important step in the process of lithography. When a specific pattern in the exposure image is selected as the alignment mark, the traditional automatic alignment methods which are based pre-set markers and image processing are not suitable. To address this issue, we propose a novel accurate image recognition method for arbitrarily selected mark patterns, which combines Support Vector Machine (SVM) with feature extraction to achieve adaptive switching of alignment templates. Firstly, based on the distinct linear contour features of silicon wafer exposure patterns, which lack color and texture characteristics, we extract Histogram of Oriented Gradients (HOG) features from the images to construct feature vectors ; then, we select the optimal SVM kernel function through experimental comparisons, and select regions of interest on silicon wafer exposure images for testing ; finally, we utilize HU-based shape features for secondary matching and recognition decisions. The experimental results demonstrate that the proposed method achieves a recognition accuracy of 100%, enabling the implementation of adaptive alignment template selection and switching.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3007831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光罩和晶片的对准是光刻过程中非常重要的一步。当选择曝光图像中的特定图案作为对准标记时,传统的基于预设标记和图像处理的自动对准方法就不适用了。针对这一问题,我们提出了一种针对任意选择标记图案的新型精确图像识别方法,该方法将支持向量机(SVM)与特征提取相结合,实现了对准模板的自适应切换。首先,基于硅片曝光图案线性轮廓特征明显,缺乏颜色和纹理特征的特点,我们从图像中提取方向梯度直方图(HOG)特征来构建特征向量;然后,通过实验比较选择最优 SVM 核函数,并在硅片曝光图像上选择感兴趣区域进行测试;最后,利用基于 HU 的形状特征进行二次匹配和识别决策。实验结果表明,所提方法的识别准确率达到了 100%,实现了自适应配准模板选择和切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on accurate recognition of arbitrarily selected mark patterns in alignment of lithography
The alignment of mask and wafer is a very important step in the process of lithography. When a specific pattern in the exposure image is selected as the alignment mark, the traditional automatic alignment methods which are based pre-set markers and image processing are not suitable. To address this issue, we propose a novel accurate image recognition method for arbitrarily selected mark patterns, which combines Support Vector Machine (SVM) with feature extraction to achieve adaptive switching of alignment templates. Firstly, based on the distinct linear contour features of silicon wafer exposure patterns, which lack color and texture characteristics, we extract Histogram of Oriented Gradients (HOG) features from the images to construct feature vectors ; then, we select the optimal SVM kernel function through experimental comparisons, and select regions of interest on silicon wafer exposure images for testing ; finally, we utilize HU-based shape features for secondary matching and recognition decisions. The experimental results demonstrate that the proposed method achieves a recognition accuracy of 100%, enabling the implementation of adaptive alignment template selection and switching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1