L. Zárybnická, M. Pagáč, R. Ševčík, Jaroslav Pokorný, Martin Marek
{"title":"拓扑参数对磁性聚乳酸三维打印结构物理机械特性的影响","authors":"L. Zárybnická, M. Pagáč, R. Ševčík, Jaroslav Pokorný, Martin Marek","doi":"10.3390/magnetochemistry9120232","DOIUrl":null,"url":null,"abstract":"This work aims to characterize 3D-printed structures composed of a thermoplastic material (polylactic acid (PLA)) containing a combination of magnetic particles composed of iron(III) oxide (hematite) and iron(II)–iron (III) oxide (magnetite) with various infill densities and print orientations in regard to their possible processing by Fused Filament Fabrication additive technology. The correct processing temperatures have been determined using thermal analysis, and the paramagnetic and mechanical properties of the samples have been tested. The relative permeability has been identified to be strongly dependent on the topology parameters of the tested samples. The results of the inductance values for the samples without magnetic additives (infill densities 50% and 100%) have been detected to be comparable; nonetheless, the magnetic samples with 100% infill density has been found to be about 50% higher. A similar trend has been observed in the case of the values of the relative permeability, where the magnetic samples with 100% infill density have been measured as having an about 40% increased relative permeability in the comparison with the samples without magnetic additives (infill densities 20–100%). Finite Element Modelling (FEM) simulations have been applied to determine the magnetic field distributions and, moreover, to calculate the holding forces of all the printed samples. The maximum value of the holding force for the minimum distance of the plastic plate has been found to reach a value of almost 300 N (magnetic sample with 100% infill density). The obtained comprehensive characterization of the printed samples may be utilized for designing and tuning the desired properties of the samples needed in various industrial applications.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Topology Parameters on Physical–Mechanical Properties of Magnetic PLA 3D-Printed Structures\",\"authors\":\"L. Zárybnická, M. Pagáč, R. Ševčík, Jaroslav Pokorný, Martin Marek\",\"doi\":\"10.3390/magnetochemistry9120232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to characterize 3D-printed structures composed of a thermoplastic material (polylactic acid (PLA)) containing a combination of magnetic particles composed of iron(III) oxide (hematite) and iron(II)–iron (III) oxide (magnetite) with various infill densities and print orientations in regard to their possible processing by Fused Filament Fabrication additive technology. The correct processing temperatures have been determined using thermal analysis, and the paramagnetic and mechanical properties of the samples have been tested. The relative permeability has been identified to be strongly dependent on the topology parameters of the tested samples. The results of the inductance values for the samples without magnetic additives (infill densities 50% and 100%) have been detected to be comparable; nonetheless, the magnetic samples with 100% infill density has been found to be about 50% higher. A similar trend has been observed in the case of the values of the relative permeability, where the magnetic samples with 100% infill density have been measured as having an about 40% increased relative permeability in the comparison with the samples without magnetic additives (infill densities 20–100%). Finite Element Modelling (FEM) simulations have been applied to determine the magnetic field distributions and, moreover, to calculate the holding forces of all the printed samples. The maximum value of the holding force for the minimum distance of the plastic plate has been found to reach a value of almost 300 N (magnetic sample with 100% infill density). The obtained comprehensive characterization of the printed samples may be utilized for designing and tuning the desired properties of the samples needed in various industrial applications.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9120232\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9120232","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Effect of Topology Parameters on Physical–Mechanical Properties of Magnetic PLA 3D-Printed Structures
This work aims to characterize 3D-printed structures composed of a thermoplastic material (polylactic acid (PLA)) containing a combination of magnetic particles composed of iron(III) oxide (hematite) and iron(II)–iron (III) oxide (magnetite) with various infill densities and print orientations in regard to their possible processing by Fused Filament Fabrication additive technology. The correct processing temperatures have been determined using thermal analysis, and the paramagnetic and mechanical properties of the samples have been tested. The relative permeability has been identified to be strongly dependent on the topology parameters of the tested samples. The results of the inductance values for the samples without magnetic additives (infill densities 50% and 100%) have been detected to be comparable; nonetheless, the magnetic samples with 100% infill density has been found to be about 50% higher. A similar trend has been observed in the case of the values of the relative permeability, where the magnetic samples with 100% infill density have been measured as having an about 40% increased relative permeability in the comparison with the samples without magnetic additives (infill densities 20–100%). Finite Element Modelling (FEM) simulations have been applied to determine the magnetic field distributions and, moreover, to calculate the holding forces of all the printed samples. The maximum value of the holding force for the minimum distance of the plastic plate has been found to reach a value of almost 300 N (magnetic sample with 100% infill density). The obtained comprehensive characterization of the printed samples may be utilized for designing and tuning the desired properties of the samples needed in various industrial applications.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.