{"title":"DeepKPred:基于深度学习的赖氨酸 2-羟基异丁酰化位点预测与功能分析","authors":"Shiqi Fan, Yan Xu","doi":"10.1007/s40745-023-00504-1","DOIUrl":null,"url":null,"abstract":"<div><p>Protein 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, plays a role in various cellular processes. To gain a comprehensive understanding of its regulatory mechanisms, it is crucial to identify the sites of 2-hydroxyisobutyrylation. Therefore, we developed a novel ensemble method, DeepKPred, for predicting species-specific 2-hydroxyisobutyrylation sites. We employed one-hot and AAindex encoding schemes to construct features from protein sequences and integrated two densely convolutional neural networks and two long short-term memory networks to build the model. In the 5-fold cross-validation dataset, DeepKPred achieved AUC values of 0.859, 0.804, 0.821, and 0.819 for Human, <i>Candida albicans</i>, Rice, Wheat, and <i>Physcomitrella patens</i>. Additionally, function analysis further indicated that different organisms tend to engage in distinct biological processes and pathways. Detailed analysis can help us learn more about the mechanism of 2-hydroxyisobutyrylation and provide insights for associated experimental verification.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepKPred: Prediction and Functional Analysis of Lysine 2-Hydroxyisobutyrylation Sites Based on Deep Learning\",\"authors\":\"Shiqi Fan, Yan Xu\",\"doi\":\"10.1007/s40745-023-00504-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, plays a role in various cellular processes. To gain a comprehensive understanding of its regulatory mechanisms, it is crucial to identify the sites of 2-hydroxyisobutyrylation. Therefore, we developed a novel ensemble method, DeepKPred, for predicting species-specific 2-hydroxyisobutyrylation sites. We employed one-hot and AAindex encoding schemes to construct features from protein sequences and integrated two densely convolutional neural networks and two long short-term memory networks to build the model. In the 5-fold cross-validation dataset, DeepKPred achieved AUC values of 0.859, 0.804, 0.821, and 0.819 for Human, <i>Candida albicans</i>, Rice, Wheat, and <i>Physcomitrella patens</i>. Additionally, function analysis further indicated that different organisms tend to engage in distinct biological processes and pathways. Detailed analysis can help us learn more about the mechanism of 2-hydroxyisobutyrylation and provide insights for associated experimental verification.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00504-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00504-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
DeepKPred: Prediction and Functional Analysis of Lysine 2-Hydroxyisobutyrylation Sites Based on Deep Learning
Protein 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, plays a role in various cellular processes. To gain a comprehensive understanding of its regulatory mechanisms, it is crucial to identify the sites of 2-hydroxyisobutyrylation. Therefore, we developed a novel ensemble method, DeepKPred, for predicting species-specific 2-hydroxyisobutyrylation sites. We employed one-hot and AAindex encoding schemes to construct features from protein sequences and integrated two densely convolutional neural networks and two long short-term memory networks to build the model. In the 5-fold cross-validation dataset, DeepKPred achieved AUC values of 0.859, 0.804, 0.821, and 0.819 for Human, Candida albicans, Rice, Wheat, and Physcomitrella patens. Additionally, function analysis further indicated that different organisms tend to engage in distinct biological processes and pathways. Detailed analysis can help us learn more about the mechanism of 2-hydroxyisobutyrylation and provide insights for associated experimental verification.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.