高速紫外线光子成像探测器中的电子云扩散

Jinyao Duan, Jinkun Zheng, Yang Yang, Yuchao Song, Anpeng Lai, Bo Wang, Weiwei Cao, Yonglin Bai
{"title":"高速紫外线光子成像探测器中的电子云扩散","authors":"Jinyao Duan, Jinkun Zheng, Yang Yang, Yuchao Song, Anpeng Lai, Bo Wang, Weiwei Cao, Yonglin Bai","doi":"10.1117/12.3007806","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly study the problem of electron cloud diffusion in high-speed ultraviolet photonic imaging detectors. In this paper, the size of the electron cloud transmitted by the microchannel plate and the anode in the high-speed ultraviolet photon imaging detector is studied by simulation, including the bias angle, pore diameter, voltage (U) and distance between MCP and anode (l) on the electron cloud received by the anode. the diffusion radius of the electron cloud increases with the increase of the bias angle, and the voltage (U) and the distance (l) between the MCP and the anode on the electron cloud received by the anode. The research shows that the diffusion radius of the electron cloud increases with the increase of the bias angle, the diffusion radius of the electron cloud. When U is larger, the energy of electron cloud is also higher. When the voltage increases to 1900V, the electron movement speed increases linearly with the increase of U. Moreover, the diffusion distance of the electron cloud radius increases with the increase of the transmission distance l. When the distance is 2 mm, a maximum electron diffusion radius is obtained. When the bias angle is 10°, the pore diameter is 10um, the voltage is 2000V, and the distance l is 0.5mm, the diffusion ratio of the electron cloud is 5.5.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion of electron clouds in high-speed ultraviolet photonic imaging detectors\",\"authors\":\"Jinyao Duan, Jinkun Zheng, Yang Yang, Yuchao Song, Anpeng Lai, Bo Wang, Weiwei Cao, Yonglin Bai\",\"doi\":\"10.1117/12.3007806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly study the problem of electron cloud diffusion in high-speed ultraviolet photonic imaging detectors. In this paper, the size of the electron cloud transmitted by the microchannel plate and the anode in the high-speed ultraviolet photon imaging detector is studied by simulation, including the bias angle, pore diameter, voltage (U) and distance between MCP and anode (l) on the electron cloud received by the anode. the diffusion radius of the electron cloud increases with the increase of the bias angle, and the voltage (U) and the distance (l) between the MCP and the anode on the electron cloud received by the anode. The research shows that the diffusion radius of the electron cloud increases with the increase of the bias angle, the diffusion radius of the electron cloud. When U is larger, the energy of electron cloud is also higher. When the voltage increases to 1900V, the electron movement speed increases linearly with the increase of U. Moreover, the diffusion distance of the electron cloud radius increases with the increase of the transmission distance l. When the distance is 2 mm, a maximum electron diffusion radius is obtained. When the bias angle is 10°, the pore diameter is 10um, the voltage is 2000V, and the distance l is 0.5mm, the diffusion ratio of the electron cloud is 5.5.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3007806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究高速紫外光子成像探测器中的电子云扩散问题。本文通过仿真研究了高速紫外光子成像探测器中微通道板和阳极传输的电子云的大小,包括偏置角、孔径、电压(U)和 MCP 与阳极之间的距离(l)对阳极接收到的电子云的影响,电子云的扩散半径随偏置角的增大而增大,电压(U)和 MCP 与阳极之间的距离(l)对阳极接收到的电子云的影响。研究表明,电子云的扩散半径随偏压角的增大而增大,电子云的扩散半径随偏压角的增大而增大。当 U 越大时,电子云的能量也越高。此外,电子云半径的扩散距离随传输距离 l 的增加而增加。当传输距离为 2 mm 时,电子扩散半径最大。当偏置角为 10°、孔径为 10um、电压为 2000V、传输距离 l 为 0.5mm 时,电子云的扩散比为 5.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion of electron clouds in high-speed ultraviolet photonic imaging detectors
In this paper, we mainly study the problem of electron cloud diffusion in high-speed ultraviolet photonic imaging detectors. In this paper, the size of the electron cloud transmitted by the microchannel plate and the anode in the high-speed ultraviolet photon imaging detector is studied by simulation, including the bias angle, pore diameter, voltage (U) and distance between MCP and anode (l) on the electron cloud received by the anode. the diffusion radius of the electron cloud increases with the increase of the bias angle, and the voltage (U) and the distance (l) between the MCP and the anode on the electron cloud received by the anode. The research shows that the diffusion radius of the electron cloud increases with the increase of the bias angle, the diffusion radius of the electron cloud. When U is larger, the energy of electron cloud is also higher. When the voltage increases to 1900V, the electron movement speed increases linearly with the increase of U. Moreover, the diffusion distance of the electron cloud radius increases with the increase of the transmission distance l. When the distance is 2 mm, a maximum electron diffusion radius is obtained. When the bias angle is 10°, the pore diameter is 10um, the voltage is 2000V, and the distance l is 0.5mm, the diffusion ratio of the electron cloud is 5.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1