农业三维成像:拉脱维亚日本榅桲表型分析的挑战与进步

IF 3.1 3区 农林科学 Q1 HORTICULTURE Horticulturae Pub Date : 2023-12-17 DOI:10.3390/horticulturae9121347
E. Kaufmane, Edgars Edelmers, K. Sudars, Ivars Namatēvs, A. Nikulins, S. Strautiņa, I. Kalniņa, Astile Peter
{"title":"农业三维成像:拉脱维亚日本榅桲表型分析的挑战与进步","authors":"E. Kaufmane, Edgars Edelmers, K. Sudars, Ivars Namatēvs, A. Nikulins, S. Strautiņa, I. Kalniņa, Astile Peter","doi":"10.3390/horticulturae9121347","DOIUrl":null,"url":null,"abstract":"This study presents an innovative approach to fruit measurement using 3D imaging, focusing on Japanese quince (Chaenomeles japonica) cultivated in Latvia. The research consisted of two phases: manual measurements of fruit parameters (length and width) using a calliper and 3D imaging using an algorithm based on k-nearest neighbors (k-NN), the ingeniously designed “Imaginary Square” method, and object projection analysis. Our results revealed discrepancies between manual measurements and 3D imaging data, highlighting challenges in the precision and accuracy of 3D imaging techniques. The study identified two primary constraints: variability in fruit positioning on the scanning platform and difficulties in distinguishing individual fruits in close proximity. These limitations underscore the need for improved algorithmic capabilities to handle diverse spatial orientations and proximities. Our findings emphasize the importance of refining 3D scanning techniques for better reliability and accuracy in agricultural applications. Enhancements in image processing, depth perception algorithms, and machine learning models are crucial for effective implementation in diverse agricultural scenarios. This research not only contributes to the scientific understanding of 3D imaging in horticulture but also underscores its potential and limitations in advancing sustainable and productive farming practices.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"353 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Imaging in Agriculture: Challenges and Advancements in the Phenotyping of Japanese Quinces in Latvia\",\"authors\":\"E. Kaufmane, Edgars Edelmers, K. Sudars, Ivars Namatēvs, A. Nikulins, S. Strautiņa, I. Kalniņa, Astile Peter\",\"doi\":\"10.3390/horticulturae9121347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative approach to fruit measurement using 3D imaging, focusing on Japanese quince (Chaenomeles japonica) cultivated in Latvia. The research consisted of two phases: manual measurements of fruit parameters (length and width) using a calliper and 3D imaging using an algorithm based on k-nearest neighbors (k-NN), the ingeniously designed “Imaginary Square” method, and object projection analysis. Our results revealed discrepancies between manual measurements and 3D imaging data, highlighting challenges in the precision and accuracy of 3D imaging techniques. The study identified two primary constraints: variability in fruit positioning on the scanning platform and difficulties in distinguishing individual fruits in close proximity. These limitations underscore the need for improved algorithmic capabilities to handle diverse spatial orientations and proximities. Our findings emphasize the importance of refining 3D scanning techniques for better reliability and accuracy in agricultural applications. Enhancements in image processing, depth perception algorithms, and machine learning models are crucial for effective implementation in diverse agricultural scenarios. This research not only contributes to the scientific understanding of 3D imaging in horticulture but also underscores its potential and limitations in advancing sustainable and productive farming practices.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"353 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae9121347\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae9121347","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种利用三维成像测量果实的创新方法,重点是拉脱维亚种植的日本榅桲(Chaenomeles japonica)。研究分为两个阶段:使用卡尺对水果参数(长度和宽度)进行人工测量;使用基于 k 近邻(k-NN)算法、巧妙设计的 "虚方格 "方法和物体投影分析进行三维成像。我们的研究结果表明,人工测量和三维成像数据之间存在差异,凸显了三维成像技术在精度和准确性方面面临的挑战。研究发现了两个主要的限制因素:扫描平台上水果定位的可变性和近距离区分单个水果的困难。这些限制突出表明,需要改进算法能力,以处理不同的空间方向和距离。我们的发现强调了改进三维扫描技术以提高农业应用可靠性和准确性的重要性。加强图像处理、深度感知算法和机器学习模型对于在各种农业场景中有效实施至关重要。这项研究不仅有助于科学理解园艺中的三维成像技术,还强调了其在推进可持续和高产农业实践中的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Dimensional Imaging in Agriculture: Challenges and Advancements in the Phenotyping of Japanese Quinces in Latvia
This study presents an innovative approach to fruit measurement using 3D imaging, focusing on Japanese quince (Chaenomeles japonica) cultivated in Latvia. The research consisted of two phases: manual measurements of fruit parameters (length and width) using a calliper and 3D imaging using an algorithm based on k-nearest neighbors (k-NN), the ingeniously designed “Imaginary Square” method, and object projection analysis. Our results revealed discrepancies between manual measurements and 3D imaging data, highlighting challenges in the precision and accuracy of 3D imaging techniques. The study identified two primary constraints: variability in fruit positioning on the scanning platform and difficulties in distinguishing individual fruits in close proximity. These limitations underscore the need for improved algorithmic capabilities to handle diverse spatial orientations and proximities. Our findings emphasize the importance of refining 3D scanning techniques for better reliability and accuracy in agricultural applications. Enhancements in image processing, depth perception algorithms, and machine learning models are crucial for effective implementation in diverse agricultural scenarios. This research not only contributes to the scientific understanding of 3D imaging in horticulture but also underscores its potential and limitations in advancing sustainable and productive farming practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
期刊介绍:
期刊最新文献
An Innovative Co-Cultivation of Microalgae and Actinomycete-Inoculated Lettuce in a Hydroponic Deep-Water Culture System for the Sustainable Development of a Food–Agriculture–Energy Nexus Growth, Triterpene Glycosides, and Antioxidant Activities of Centella asiatica L. Urban Grown in a Controlled Environment with Different Nutrient Solution Formulations and LED Light Intensities Melatonin Promotes Accumulation of Resveratrol and Its Derivatives through Upregulation of PAL, 4CL, C4H, and STS in Grape Seeds Transcription Factor MdPLT1 Involved Adventitious Root Initiation in Apple Rootstocks Assessment of Phytotoxicity in Untreated and Electrochemically Treated Leachates through the Analysis of Early Seed Growth and Inductively Coupled Plasma-Optical Emission Spectroscopy Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1