Man Seng Sim, Kok Yeow, You, Raimi Dewan, F. Esa, Mohd Rashidi Salim, Stephanie Yen, Nee Kew, Fandi Hamid
{"title":"使用带狭缝的环形和圆形贴片的双波段超材料微波吸收器","authors":"Man Seng Sim, Kok Yeow, You, Raimi Dewan, F. Esa, Mohd Rashidi Salim, Stephanie Yen, Nee Kew, Fandi Hamid","doi":"10.7716/aem.v12i4.2324","DOIUrl":null,"url":null,"abstract":"This paper proposes a dual-band metamaterial microwave absorber operating at 2.5 GHz and 5.8 GHz. The absorber consists of a ring and a circular patch with slits resonator structures printed on a FR4 dielectric substrate backed by a ground layer. The main advantage of the absorber lies in its design flexibility in which each absorption band is independent and can be individually tuned by changing the dimensions of each resonator structure. The absorber unit cell is simulated and parametrically optimized using Computer Simulation Technology (CST) software. The absorption mechanism is analyzed through surface current analysis. The absorber prototype, with dimensions of 200 × 200 × 1.6 mm3 and consisting of an array of 7 × 7 unit cells, is fabricated and experimentally investigated using antennas in free-space measurement. The absorber exhibits over 97% absorption at both resonance frequencies. Furthermore, the absorber is demonstrated to be applicable in sensing applications for dielectric constant determination. With its design simplicity, wide-angle receptive, and polarization insensitive behavior, it is envisaged that the proposed absorber will find practical use in absorbing and sensing applications.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":"3 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Band Metamaterial Microwave Absorber using Ring and Circular Patch with Slits\",\"authors\":\"Man Seng Sim, Kok Yeow, You, Raimi Dewan, F. Esa, Mohd Rashidi Salim, Stephanie Yen, Nee Kew, Fandi Hamid\",\"doi\":\"10.7716/aem.v12i4.2324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dual-band metamaterial microwave absorber operating at 2.5 GHz and 5.8 GHz. The absorber consists of a ring and a circular patch with slits resonator structures printed on a FR4 dielectric substrate backed by a ground layer. The main advantage of the absorber lies in its design flexibility in which each absorption band is independent and can be individually tuned by changing the dimensions of each resonator structure. The absorber unit cell is simulated and parametrically optimized using Computer Simulation Technology (CST) software. The absorption mechanism is analyzed through surface current analysis. The absorber prototype, with dimensions of 200 × 200 × 1.6 mm3 and consisting of an array of 7 × 7 unit cells, is fabricated and experimentally investigated using antennas in free-space measurement. The absorber exhibits over 97% absorption at both resonance frequencies. Furthermore, the absorber is demonstrated to be applicable in sensing applications for dielectric constant determination. With its design simplicity, wide-angle receptive, and polarization insensitive behavior, it is envisaged that the proposed absorber will find practical use in absorbing and sensing applications.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v12i4.2324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v12i4.2324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dual-Band Metamaterial Microwave Absorber using Ring and Circular Patch with Slits
This paper proposes a dual-band metamaterial microwave absorber operating at 2.5 GHz and 5.8 GHz. The absorber consists of a ring and a circular patch with slits resonator structures printed on a FR4 dielectric substrate backed by a ground layer. The main advantage of the absorber lies in its design flexibility in which each absorption band is independent and can be individually tuned by changing the dimensions of each resonator structure. The absorber unit cell is simulated and parametrically optimized using Computer Simulation Technology (CST) software. The absorption mechanism is analyzed through surface current analysis. The absorber prototype, with dimensions of 200 × 200 × 1.6 mm3 and consisting of an array of 7 × 7 unit cells, is fabricated and experimentally investigated using antennas in free-space measurement. The absorber exhibits over 97% absorption at both resonance frequencies. Furthermore, the absorber is demonstrated to be applicable in sensing applications for dielectric constant determination. With its design simplicity, wide-angle receptive, and polarization insensitive behavior, it is envisaged that the proposed absorber will find practical use in absorbing and sensing applications.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.