Shuai Chen, J. Zhong, L. Ran, Y. Yi, Wanfa Wang, Zelong Yan, Si-liang Li, K. M. Mostofa
{"title":"地貌控制和人类活动对山区河流溶解有机碳的影响:光学特性和碳同位素的启示","authors":"Shuai Chen, J. Zhong, L. Ran, Y. Yi, Wanfa Wang, Zelong Yan, Si-liang Li, K. M. Mostofa","doi":"10.5194/bg-20-4949-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China, which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC (δ13CDOC and Δ14CDOC), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 928 years BP to the present. Stepwise multiple regression analyses and partial least square path models revealed that geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched δ13CDOC and Δ14CDOC, and more aromatic dissolved organic matter (DOM), which were opposite to catchments with gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use, with higher DOC concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced, and exhibited a higher degree of humification and more autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and the quality of DOM in mountainous rivers, which are globally abundant.\n","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"11 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes\",\"authors\":\"Shuai Chen, J. Zhong, L. Ran, Y. Yi, Wanfa Wang, Zelong Yan, Si-liang Li, K. M. Mostofa\",\"doi\":\"10.5194/bg-20-4949-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China, which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC (δ13CDOC and Δ14CDOC), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 928 years BP to the present. Stepwise multiple regression analyses and partial least square path models revealed that geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched δ13CDOC and Δ14CDOC, and more aromatic dissolved organic matter (DOM), which were opposite to catchments with gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use, with higher DOC concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced, and exhibited a higher degree of humification and more autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and the quality of DOM in mountainous rivers, which are globally abundant.\\n\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-20-4949-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/bg-20-4949-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要山区河流是将溶解有机碳(DOC)从陆地环境输送到下游生态系统的关键。然而,地貌因素和人为影响如何控制山区河流中溶解有机碳的组成和输出在很大程度上仍不清楚。在此,我们探讨了受人为活动影响较大的中国西南部三个亚热带山区集水区(即印江、石阡和余庆集水区)的 DOC 动态变化。采用水化学、DOC的稳定碳同位素和放射性碳同位素(δ13CDOC和δ14CDOC)以及光学性质(紫外吸收光谱和荧光光谱)来评估河流DOC的生物地球化学过程和控制因素。结果表明,从公元前 928 年到现在,印江 DOC 的放射性碳年代差异很大。逐步多元回归分析和偏最小二乘法路径模型显示,地貌和人类活动是控制 DOC 浓度和 DOM 特征的主要驱动因素。集水坡度较大的集水区 DOC 浓度较低,δ13CDOC 和 Δ14CDOC富集,芳香族溶解有机物(DOM)较多,这与集水坡度较缓的集水区相反。溶解有机物浓度的变化也受土地利用的影响,城市和农业区的溶解有机物浓度较高。此外,在城市和农业用地比例较高的集水区,DOM 的芳香度较低,产生时间较短,腐殖化程度较高,自生腐殖样 DOM 较多。这项研究强调了将地貌对 DOC 来源的控制和人类活动对 DOM 组成的影响纳入对 DOC 动态和全球山区河流 DOM 质量的理解中的重要意义。
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Abstract. Mountainous rivers are critical in transporting dissolved organic carbon (DOC) from terrestrial environments to downstream ecosystems. However, how geomorphologic factors and anthropogenic impacts control the composition and export of DOC in mountainous rivers remains largely unclear. Here, we explore DOC dynamics in three subtropical mountainous catchments (i.e., the Yinjiang, Shiqian, and Yuqing catchments) in southwest China, which are heavily influenced by anthropogenic activities. Water chemistry, stable and radioactive carbon isotopes of DOC (δ13CDOC and Δ14CDOC), and optical properties (UV absorbance and fluorescence spectra) were employed to assess the biogeochemical processes and controlling factors on riverine DOC. The radiocarbon ages of DOC in the Yinjiang River varied widely from 928 years BP to the present. Stepwise multiple regression analyses and partial least square path models revealed that geomorphology and anthropogenic activities were the major drivers controlling DOC concentrations and DOM characteristics. Catchments with higher catchment slope gradients were characterized by lower DOC concentrations, enriched δ13CDOC and Δ14CDOC, and more aromatic dissolved organic matter (DOM), which were opposite to catchments with gentle catchment slopes. Variabilities in DOC concentrations were also regulated by land use, with higher DOC concentrations in urban and agricultural areas. Furthermore, DOM in catchments with a higher proportion of urban and agricultural land uses was less aromatic, less recently produced, and exhibited a higher degree of humification and more autochthonous humic-like DOM. This research highlights the significance of incorporating geomorphologic controls on DOC sources and anthropogenic impacts on DOM composition into the understanding of DOC dynamics and the quality of DOM in mountainous rivers, which are globally abundant.
期刊介绍:
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.