Chayanee Boontun, S. Vatanyoopaisarn, Vichai Domrongpokkaphan, C. Phalakornkule, R. Chinli, P. Thitisak, Sungwarn Hankla
{"title":"抗食源性细菌活性、消化酶分泌和抗菌基因的评估,作为工业用益生菌株的选择","authors":"Chayanee Boontun, S. Vatanyoopaisarn, Vichai Domrongpokkaphan, C. Phalakornkule, R. Chinli, P. Thitisak, Sungwarn Hankla","doi":"10.14416/j.asep.2023.12.003","DOIUrl":null,"url":null,"abstract":"Beneficial microbes, such as probiotic bacteria, are increasingly in demand in the food and feed industry. Lactic acid bacteria and bifidobacteria are commonly used as commercial probiotics, only a few species have been isolated from Southeast Asia areas. This study employed criteria including antimicrobial activity, the release of digestive enzymes, and the absence of antibiotic-resistant (AMR) genes to screen potential local isolates. The results revealed that 4 out of 16 isolates met these criteria, displaying anti-foodborne bacterial activities and a lack of fifty-one tested AMR genes. Furthermore, the four selected isolates demonstrated the production of extracellular digestive enzymes, including amylase, lipase, protease, β-glucanase, and cellulase, with enzyme indices ranging from 1.09–1.31. Among these isolates, two potential probiotics were identified as Bifidobacterium animalis subsp. lactis (strain H9-01) and Lactobacillus reuteri (strain P4-S03). Importantly, both species are approved for use as food and feed supplements in accordance with Thai regulations. This research outlines an approach for screening potential probiotics for industrial-scale applications.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Anti-Foodborne Bacterial Activity, Digestive Enzyme Secretion, and Antimicrobial Resistant Genes as Probiotic Strains Selection for Industrial Interest\",\"authors\":\"Chayanee Boontun, S. Vatanyoopaisarn, Vichai Domrongpokkaphan, C. Phalakornkule, R. Chinli, P. Thitisak, Sungwarn Hankla\",\"doi\":\"10.14416/j.asep.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beneficial microbes, such as probiotic bacteria, are increasingly in demand in the food and feed industry. Lactic acid bacteria and bifidobacteria are commonly used as commercial probiotics, only a few species have been isolated from Southeast Asia areas. This study employed criteria including antimicrobial activity, the release of digestive enzymes, and the absence of antibiotic-resistant (AMR) genes to screen potential local isolates. The results revealed that 4 out of 16 isolates met these criteria, displaying anti-foodborne bacterial activities and a lack of fifty-one tested AMR genes. Furthermore, the four selected isolates demonstrated the production of extracellular digestive enzymes, including amylase, lipase, protease, β-glucanase, and cellulase, with enzyme indices ranging from 1.09–1.31. Among these isolates, two potential probiotics were identified as Bifidobacterium animalis subsp. lactis (strain H9-01) and Lactobacillus reuteri (strain P4-S03). Importantly, both species are approved for use as food and feed supplements in accordance with Thai regulations. This research outlines an approach for screening potential probiotics for industrial-scale applications.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Evaluation of Anti-Foodborne Bacterial Activity, Digestive Enzyme Secretion, and Antimicrobial Resistant Genes as Probiotic Strains Selection for Industrial Interest
Beneficial microbes, such as probiotic bacteria, are increasingly in demand in the food and feed industry. Lactic acid bacteria and bifidobacteria are commonly used as commercial probiotics, only a few species have been isolated from Southeast Asia areas. This study employed criteria including antimicrobial activity, the release of digestive enzymes, and the absence of antibiotic-resistant (AMR) genes to screen potential local isolates. The results revealed that 4 out of 16 isolates met these criteria, displaying anti-foodborne bacterial activities and a lack of fifty-one tested AMR genes. Furthermore, the four selected isolates demonstrated the production of extracellular digestive enzymes, including amylase, lipase, protease, β-glucanase, and cellulase, with enzyme indices ranging from 1.09–1.31. Among these isolates, two potential probiotics were identified as Bifidobacterium animalis subsp. lactis (strain H9-01) and Lactobacillus reuteri (strain P4-S03). Importantly, both species are approved for use as food and feed supplements in accordance with Thai regulations. This research outlines an approach for screening potential probiotics for industrial-scale applications.