使用涡轮增压器增强含有水/铜纳米流体的列管式热交换器的传热效果

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-12-14 DOI:10.1515/cppm-2023-0079
Zhiqiang Long, Buqing Zhang, Guoqing Liu, Zhengxin Wu, Qiang Yan
{"title":"使用涡轮增压器增强含有水/铜纳米流体的列管式热交换器的传热效果","authors":"Zhiqiang Long, Buqing Zhang, Guoqing Liu, Zhengxin Wu, Qiang Yan","doi":"10.1515/cppm-2023-0079","DOIUrl":null,"url":null,"abstract":"Abstract In the current essay, the numerical investigation of heat transfer in an exchanger containing nanofluid with Cu nanoparticles in the presence of a new inserter is carried out. The equations governing the turbulent fluid flow have been solved utilizing single-phase models with the aid of the finite volume method in ANSYS-FLUENT software using the k-ε turbulence model for the Re number ranging from 4000 to 8000. Furthermore, the influence of Reynolds number, nanoparticle volume fraction, and geometric characteristics of turbulator on the friction factor and Nusselt number have been scrutinized. Outcomes reveal that the newly introduced inserter performs well and increases the Nusselt number by roughly 34–54 times and the friction coefficient by approximately 1.8–3.2 times compared to the smooth tube. It is also observed that a 2 % increase in the nanoparticles volume fraction has resulted in a rise in the Nusselt number by around 92 %. To attain the optimal performance of the presented turbulator, the longitudinal distance between the inserters is recommended as S/D = 5.27, for which Performance evaluation criteria values in the range of 3.01–9.23 in the Reynolds range under investigation are acquired.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator\",\"authors\":\"Zhiqiang Long, Buqing Zhang, Guoqing Liu, Zhengxin Wu, Qiang Yan\",\"doi\":\"10.1515/cppm-2023-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the current essay, the numerical investigation of heat transfer in an exchanger containing nanofluid with Cu nanoparticles in the presence of a new inserter is carried out. The equations governing the turbulent fluid flow have been solved utilizing single-phase models with the aid of the finite volume method in ANSYS-FLUENT software using the k-ε turbulence model for the Re number ranging from 4000 to 8000. Furthermore, the influence of Reynolds number, nanoparticle volume fraction, and geometric characteristics of turbulator on the friction factor and Nusselt number have been scrutinized. Outcomes reveal that the newly introduced inserter performs well and increases the Nusselt number by roughly 34–54 times and the friction coefficient by approximately 1.8–3.2 times compared to the smooth tube. It is also observed that a 2 % increase in the nanoparticles volume fraction has resulted in a rise in the Nusselt number by around 92 %. To attain the optimal performance of the presented turbulator, the longitudinal distance between the inserters is recommended as S/D = 5.27, for which Performance evaluation criteria values in the range of 3.01–9.23 in the Reynolds range under investigation are acquired.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文对含有铜纳米颗粒的纳米流体的交换器在新型插入器存在下的传热情况进行了数值研究。在 ANSYS-FLUENT 软件中使用 k-ε 湍流模型,在 Re 数为 4000 到 8000 的范围内,利用有限体积法,利用单相模型求解了湍流流体流动方程。此外,还仔细研究了雷诺数、纳米颗粒体积分数和湍流器几何特征对摩擦因数和努塞尔特数的影响。结果表明,新引入的插入器性能良好,与光滑管相比,努塞尔特数增加了约 34-54 倍,摩擦系数增加了约 1.8-3.2 倍。此外,纳米颗粒体积分数每增加 2%,努塞尔特数就会增加约 92%。为使所介绍的涡轮器达到最佳性能,建议插入器之间的纵向距离为 S/D = 5.27,在雷诺范围内,性能评估标准值在 3.01-9.23 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator
Abstract In the current essay, the numerical investigation of heat transfer in an exchanger containing nanofluid with Cu nanoparticles in the presence of a new inserter is carried out. The equations governing the turbulent fluid flow have been solved utilizing single-phase models with the aid of the finite volume method in ANSYS-FLUENT software using the k-ε turbulence model for the Re number ranging from 4000 to 8000. Furthermore, the influence of Reynolds number, nanoparticle volume fraction, and geometric characteristics of turbulator on the friction factor and Nusselt number have been scrutinized. Outcomes reveal that the newly introduced inserter performs well and increases the Nusselt number by roughly 34–54 times and the friction coefficient by approximately 1.8–3.2 times compared to the smooth tube. It is also observed that a 2 % increase in the nanoparticles volume fraction has resulted in a rise in the Nusselt number by around 92 %. To attain the optimal performance of the presented turbulator, the longitudinal distance between the inserters is recommended as S/D = 5.27, for which Performance evaluation criteria values in the range of 3.01–9.23 in the Reynolds range under investigation are acquired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1