Rong Chen, Kun Cao, Yanwei Wen, Fan Yang, Jian Wang, Xiao Liu, Bin Shan
{"title":"先进显示技术中的原子层沉积:从光致发光到封装","authors":"Rong Chen, Kun Cao, Yanwei Wen, Fan Yang, Jian Wang, Xiao Liu, Bin Shan","doi":"10.1088/2631-7990/ad15f5","DOIUrl":null,"url":null,"abstract":"\n Driven by the growing demand for next-generation displays, the evolution of advanced luminescent materials with exceptional photoelectric properties, such as quantum dots and phosphors are accelerating rapidly. Nevertheless, the primary challenge confronting the practical applications of these luminescent materials lie in meeting high durability requirements. This perspective delves into atomic layer deposition (ALD) developed for stabilizing luminescent materials, which is employed in the fabrication of flexible display devices through material modification, surface and interface engineering, encapsulation, cross-scale manufacturing, and simulations. To satisfy low-cost, high-efficiency, and high-reliability manufacturing requirements, equipments such as spatial ALD and fluidized ALD have been developed. The strategic approach establishes the groundwork for the development of ultra-stable luminescent materials, highly efficient LEDs, and thin-film packaging. This significantly enhances their potential applicability in LED illumination and backlight displays, marking a notable advancement in the display industry.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation\",\"authors\":\"Rong Chen, Kun Cao, Yanwei Wen, Fan Yang, Jian Wang, Xiao Liu, Bin Shan\",\"doi\":\"10.1088/2631-7990/ad15f5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Driven by the growing demand for next-generation displays, the evolution of advanced luminescent materials with exceptional photoelectric properties, such as quantum dots and phosphors are accelerating rapidly. Nevertheless, the primary challenge confronting the practical applications of these luminescent materials lie in meeting high durability requirements. This perspective delves into atomic layer deposition (ALD) developed for stabilizing luminescent materials, which is employed in the fabrication of flexible display devices through material modification, surface and interface engineering, encapsulation, cross-scale manufacturing, and simulations. To satisfy low-cost, high-efficiency, and high-reliability manufacturing requirements, equipments such as spatial ALD and fluidized ALD have been developed. The strategic approach establishes the groundwork for the development of ultra-stable luminescent materials, highly efficient LEDs, and thin-film packaging. This significantly enhances their potential applicability in LED illumination and backlight displays, marking a notable advancement in the display industry.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad15f5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad15f5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
在下一代显示器需求不断增长的推动下,量子点和荧光粉等具有特殊光电特性的先进发光材料正在迅速发展。然而,这些发光材料在实际应用中面临的主要挑战是如何满足高耐久性要求。本视角深入探讨了为稳定发光材料而开发的原子层沉积(ALD)技术,该技术通过材料改性、表面和界面工程、封装、跨尺度制造和模拟,用于制造柔性显示器件。为了满足低成本、高效率和高可靠性的制造要求,人们开发了空间 ALD 和流化 ALD 等设备。这种战略方法为开发超稳定发光材料、高效 LED 和薄膜封装奠定了基础。这大大提高了它们在 LED 照明和背光显示器中的潜在适用性,标志着显示器行业的显著进步。
Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation
Driven by the growing demand for next-generation displays, the evolution of advanced luminescent materials with exceptional photoelectric properties, such as quantum dots and phosphors are accelerating rapidly. Nevertheless, the primary challenge confronting the practical applications of these luminescent materials lie in meeting high durability requirements. This perspective delves into atomic layer deposition (ALD) developed for stabilizing luminescent materials, which is employed in the fabrication of flexible display devices through material modification, surface and interface engineering, encapsulation, cross-scale manufacturing, and simulations. To satisfy low-cost, high-efficiency, and high-reliability manufacturing requirements, equipments such as spatial ALD and fluidized ALD have been developed. The strategic approach establishes the groundwork for the development of ultra-stable luminescent materials, highly efficient LEDs, and thin-film packaging. This significantly enhances their potential applicability in LED illumination and backlight displays, marking a notable advancement in the display industry.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.