Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian
{"title":"基于树轮的大气二氧化碳肥化效应随林木年龄的变化趋势","authors":"Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian","doi":"10.3390/f14122441","DOIUrl":null,"url":null,"abstract":"The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in Atmospheric CO2 Fertilization Effects with Stand Age Based on Tree Rings\",\"authors\":\"Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian\",\"doi\":\"10.3390/f14122441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14122441\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122441","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Trends in Atmospheric CO2 Fertilization Effects with Stand Age Based on Tree Rings
The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.