基于树轮的大气二氧化碳肥化效应随林木年龄的变化趋势

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-12-14 DOI:10.3390/f14122441
Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian
{"title":"基于树轮的大气二氧化碳肥化效应随林木年龄的变化趋势","authors":"Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian","doi":"10.3390/f14122441","DOIUrl":null,"url":null,"abstract":"The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in Atmospheric CO2 Fertilization Effects with Stand Age Based on Tree Rings\",\"authors\":\"Yanxi Chen, Bin Wang, Mingze Li, Xiangqi Kong, Shaojie Bian\",\"doi\":\"10.3390/f14122441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14122441\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122441","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

全球碳排放量的增加加剧了二氧化碳施肥对碳循环的影响。二氧化碳施肥受多种因素影响,包括不同林龄和类型的树木之间的生理差异,以及不同气候条件的影响。研究不同气候带二氧化碳施肥效应的差异,并深入探讨这些效应与森林年龄和类型之间的关联至关重要。这种探索将加深我们对森林对环境变化反应的认识。本研究利用国际林木年轮数据库中的年轮宽度数据,采用广义加性混合模型和随机森林模型,揭示了北半球森林年龄的二氧化碳施肥效应模式。这项研究还探讨了二氧化碳施肥效应在不同气候带的差异,以及同一气候带不同森林类型之间的差异。研究结果表明,森林年龄与二氧化碳施肥效应之间存在联系:树苗林和中龄林的二氧化碳施肥效应呈上升趋势,而成熟林的二氧化碳施肥效应则呈下降趋势。在更温暖、更干燥的环境中,二氧化碳增加对树木施肥的影响更为明显。此外,针叶林比阔叶林表现出更显著的二氧化碳施肥效应,落叶针叶林在这方面也超过了常绿针叶林。这项研究对于了解二氧化碳施肥效应的变化模式以及森林如何应对大气变化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in Atmospheric CO2 Fertilization Effects with Stand Age Based on Tree Rings
The increase in global carbon emissions has intensified the effects of CO2 fertilization on the carbon cycle. CO2 fertilization is shaped by several factors, including the physiological differences among trees of varied forest ages and types, as well as the influence of different climatic conditions. It is essential to investigate the differences in CO2 fertilization effects across diverse climate zones and delve into the association between these effects and forest age and type. Such exploration will deepen our knowledge of forest responses to environmental changes. This study used annual ring width data from the International Tree-Ring Data Bank, employing the generalized additive mixed models and the Random Forest model to discern the pattern of the CO2 fertilization effect concerning forest age in the Northern Hemisphere. This study also explored the variations in the effect of CO2 fertilization across unique climate zones and the disparities among various forest types within the same climatic zone. The results indicated a link between forest age and the CO2 fertilization effect: it tends to increase in sapling forests and middle-aged forests and diminish in mature forests. Warmer, drier environments had a more marked effect of increased CO2 on tree fertilization. Additionally, coniferous forests demonstrated a more substantial CO2 fertilization effect than broadleaf forests, and deciduous needle-leaf forests surpassed evergreen needle-leaf forests in this regard. This research is pivotal in understanding the shifting patterns of CO2 fertilization effects and how forests respond to atmospheric changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1