M. V. Stogov, E. A. Kireeva, G. Dubinenko, S. Tverdokhlebov
{"title":"聚乳酸/羟基磷灰石复合材料结晶度对聚合物结构降解率的影响","authors":"M. V. Stogov, E. A. Kireeva, G. Dubinenko, S. Tverdokhlebov","doi":"10.18019/1028-4427-2023-29-6-591-595","DOIUrl":null,"url":null,"abstract":"Introduction Assessment of biological characteristics of polylactide/hydroxyapatite (PLLA/HA) biodegradable materials is requiered to specify indications for the use of PLLA/HA composite implants in clinical practice.The present study was aimed to measure the kinetics of calcium and phosphate release from PLLA and its dependence on polymer structure crystallinity. Material and methods Four types of biodegradable materials were studied in vitro. Samples of type 1 and type 3 made of crystalline PLLA after annealing contained 25 % and 50 % of HA mass fraction, respectively. Samples of type 2 and type 4 made of amorphous PLLA (without annealing) contained 25 % and 50 % of HA mass fraction, respectively. In every group, 6 samples were tested. The samples were incubated in an aqueous medium at 37 °C for 52 weeks. The rate of PLLA degradation was assessed by the accumulation of lactate monomer in the hydrolysate. The concentrations of calcium ions and phosphate ions were determined for assessment the HA hydrolysis rate. The degree of crystallinity of the polymer matrix was evaluated by scanning calorimetry.Results The hydrolysis of PLLA and HA in the samples was not simultaneous. The PLLA was hydrolyzed first followed by HA hydrolysis. By the moment of complete hydrolysis of PLLA, there was only 15 % of hydrolyzed HA. The release of calcium ions occurred from the sixth week of incubation for all tested samples, that of phosphate ions from the third week. The total amount of the released calcium ions and phosphate ions decreased in the line: material 3 > material 4 > material 1 > material 2. Calcium ions in the hydrolysates were detected up to 42 weeks of incubation, phosphate ions up to the 52nd week.Conclusion Higher crystallinity of PLLA achieved by annealing results in increased rate of hydrolysis of HA from PLLA matrix. Biological activity of PLLA/HA implants can be determined by degree of polymer crystallinity and saturation with HA.","PeriodicalId":37426,"journal":{"name":"Genij Ortopedii","volume":"526 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of polylactide/hydroxyapatite composite material crystallinity on the polymer structure degradation rate\",\"authors\":\"M. V. Stogov, E. A. Kireeva, G. Dubinenko, S. Tverdokhlebov\",\"doi\":\"10.18019/1028-4427-2023-29-6-591-595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction Assessment of biological characteristics of polylactide/hydroxyapatite (PLLA/HA) biodegradable materials is requiered to specify indications for the use of PLLA/HA composite implants in clinical practice.The present study was aimed to measure the kinetics of calcium and phosphate release from PLLA and its dependence on polymer structure crystallinity. Material and methods Four types of biodegradable materials were studied in vitro. Samples of type 1 and type 3 made of crystalline PLLA after annealing contained 25 % and 50 % of HA mass fraction, respectively. Samples of type 2 and type 4 made of amorphous PLLA (without annealing) contained 25 % and 50 % of HA mass fraction, respectively. In every group, 6 samples were tested. The samples were incubated in an aqueous medium at 37 °C for 52 weeks. The rate of PLLA degradation was assessed by the accumulation of lactate monomer in the hydrolysate. The concentrations of calcium ions and phosphate ions were determined for assessment the HA hydrolysis rate. The degree of crystallinity of the polymer matrix was evaluated by scanning calorimetry.Results The hydrolysis of PLLA and HA in the samples was not simultaneous. The PLLA was hydrolyzed first followed by HA hydrolysis. By the moment of complete hydrolysis of PLLA, there was only 15 % of hydrolyzed HA. The release of calcium ions occurred from the sixth week of incubation for all tested samples, that of phosphate ions from the third week. The total amount of the released calcium ions and phosphate ions decreased in the line: material 3 > material 4 > material 1 > material 2. Calcium ions in the hydrolysates were detected up to 42 weeks of incubation, phosphate ions up to the 52nd week.Conclusion Higher crystallinity of PLLA achieved by annealing results in increased rate of hydrolysis of HA from PLLA matrix. Biological activity of PLLA/HA implants can be determined by degree of polymer crystallinity and saturation with HA.\",\"PeriodicalId\":37426,\"journal\":{\"name\":\"Genij Ortopedii\",\"volume\":\"526 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genij Ortopedii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18019/1028-4427-2023-29-6-591-595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genij Ortopedii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18019/1028-4427-2023-29-6-591-595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
引言 评估聚乳酸/羟基磷灰石(PLLA/HA)生物可降解材料的生物特性,是明确在临床实践中使用聚乳酸/羟基磷灰石复合植入物适应症的必要条件。本研究旨在测量聚乳酸释放钙和磷酸盐的动力学及其与聚合物结构结晶度的关系。材料和方法 对四种生物可降解材料进行了体外研究。退火后由结晶聚乳酸制成的类型 1 和类型 3 样品分别含有 25% 和 50% 的 HA 质量分数。由无定形聚乳酸制成的 2 型和 4 型样品(未退火)分别含有 25% 和 50% 的 HA 质量分数。每组测试 6 个样品。样品在 37 °C 的水培养基中培养 52 周。通过水解产物中乳酸单体的积累来评估聚乳酸的降解率。测定钙离子和磷酸根离子的浓度是为了评估 HA 的水解率。结果 样品中的 PLLA 和 HA 并非同时水解。先水解的是 PLLA,然后是 HA。当 PLLA 完全水解时,水解的 HA 仅占 15%。所有测试样品从培养的第六周开始释放钙离子,从第三周开始释放磷离子。钙离子和磷离子的释放总量依次为:材料 3 > 材料 4 > 材料 1 > 材料 2。在培养 42 周的水解物中检测到了钙离子,在第 52 周的水解物中检测到了磷酸盐离子。PLLA/HA 植入物的生物活性可通过聚合物结晶度和 HA 饱和度来确定。
The influence of polylactide/hydroxyapatite composite material crystallinity on the polymer structure degradation rate
Introduction Assessment of biological characteristics of polylactide/hydroxyapatite (PLLA/HA) biodegradable materials is requiered to specify indications for the use of PLLA/HA composite implants in clinical practice.The present study was aimed to measure the kinetics of calcium and phosphate release from PLLA and its dependence on polymer structure crystallinity. Material and methods Four types of biodegradable materials were studied in vitro. Samples of type 1 and type 3 made of crystalline PLLA after annealing contained 25 % and 50 % of HA mass fraction, respectively. Samples of type 2 and type 4 made of amorphous PLLA (without annealing) contained 25 % and 50 % of HA mass fraction, respectively. In every group, 6 samples were tested. The samples were incubated in an aqueous medium at 37 °C for 52 weeks. The rate of PLLA degradation was assessed by the accumulation of lactate monomer in the hydrolysate. The concentrations of calcium ions and phosphate ions were determined for assessment the HA hydrolysis rate. The degree of crystallinity of the polymer matrix was evaluated by scanning calorimetry.Results The hydrolysis of PLLA and HA in the samples was not simultaneous. The PLLA was hydrolyzed first followed by HA hydrolysis. By the moment of complete hydrolysis of PLLA, there was only 15 % of hydrolyzed HA. The release of calcium ions occurred from the sixth week of incubation for all tested samples, that of phosphate ions from the third week. The total amount of the released calcium ions and phosphate ions decreased in the line: material 3 > material 4 > material 1 > material 2. Calcium ions in the hydrolysates were detected up to 42 weeks of incubation, phosphate ions up to the 52nd week.Conclusion Higher crystallinity of PLLA achieved by annealing results in increased rate of hydrolysis of HA from PLLA matrix. Biological activity of PLLA/HA implants can be determined by degree of polymer crystallinity and saturation with HA.
期刊介绍:
Journal’s main goal is to contribute to the development of the contemporary medical science via presentation of fundamental and applied original scientific studies to the scientific and practical medical community that would widen and deepen the understanding of the most important problems in the field of traumatology, orthopaedics, and related specialties. Our journal provides a direct open access to its content which is based on the principle that the open access option promotes global exchange of knowledge and experience. Journal’s strategy: -Development of the journal as a scientific platform for researchers, doctors, post-graduates and residents -Attraction of highly-cited authors to publish their studies -Selection of manuscripts of scientific interest for readers that will impact on journal citation index in RINC -Increase in the portion of publications submitted by foreign authors and studies conducted in association with foreign scientists; growth of citations in the journals that are included into global systems of indexing and reputable databases -Improvement of the Journal’s web site in two languages for a greater accessibility by authors and readers -Introduction of the Journal into global indexing systems