{"title":"利用 3D 打印技术制造的石墨烯纳米片复合树脂的力学性能","authors":"Chanwit Pa-art, W. Nuansing","doi":"10.55766/sujst-2023-05-e03020","DOIUrl":null,"url":null,"abstract":"Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for the fabrication of complex structures with numerous applications. The aim of this study was to investigate the potential of graphene nanoplatelets (GNP) as an additive for improving the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was conducted on the 3D-printed samples using the ASTM D638 type V standard model. The results indicated that adding 0.1% w/w GNP with 20 sec of exposure time increased the elastic modulus of the specimen from 7.31±1.02 MPa to 9.38±0.37 MPa for x-orientation (horizontal) and from 7.62±0.93 MPa to 9.58±0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile strength increased from 3.87±1.13 MPa to 5.28±0.73 MPa for y-orientation and from 4.06±0.92 MPa to 5.49±0.49 MPa for x-orientation. These results demonstrate the efficacy of GNP as an effective additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D printing.","PeriodicalId":43478,"journal":{"name":"Suranaree Journal of Science and Technology","volume":"107 2","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELETS COMPOSITE RESIN FABRICATED BY 3D PRINTING TECHNIQUE\",\"authors\":\"Chanwit Pa-art, W. Nuansing\",\"doi\":\"10.55766/sujst-2023-05-e03020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for the fabrication of complex structures with numerous applications. The aim of this study was to investigate the potential of graphene nanoplatelets (GNP) as an additive for improving the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was conducted on the 3D-printed samples using the ASTM D638 type V standard model. The results indicated that adding 0.1% w/w GNP with 20 sec of exposure time increased the elastic modulus of the specimen from 7.31±1.02 MPa to 9.38±0.37 MPa for x-orientation (horizontal) and from 7.62±0.93 MPa to 9.58±0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile strength increased from 3.87±1.13 MPa to 5.28±0.73 MPa for y-orientation and from 4.06±0.92 MPa to 5.49±0.49 MPa for x-orientation. These results demonstrate the efficacy of GNP as an effective additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D printing.\",\"PeriodicalId\":43478,\"journal\":{\"name\":\"Suranaree Journal of Science and Technology\",\"volume\":\"107 2\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suranaree Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55766/sujst-2023-05-e03020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-05-e03020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
大桶光聚合三维打印(包括液晶三维打印)是一种制造复杂结构的多功能方法,应用广泛。本研究旨在探究石墨烯纳米片(GNP)作为添加剂改善用于 LCD 3D 打印的碳填充复合树脂机械性能的潜力。采用 ASTM D638 V 型标准模型对 3D 打印样品进行了拉伸测试。结果表明,添加 0.1% w/w GNP 并暴露 20 秒后,试样在 x 方向(水平)的弹性模量从 7.31±1.02 兆帕增加到 9.38±0.37 兆帕,在 y 方向(垂直)的弹性模量从 7.62±0.93 兆帕增加到 9.58±0.61 兆帕。此外,y 方向的最大拉伸强度从 3.87±1.13 兆帕增至 5.28±0.73 兆帕,x 方向的最大拉伸强度从 4.06±0.92 兆帕增至 5.49±0.49 兆帕。这些结果表明,GNP 是一种有效的添加剂,可提高 LCD 3D 打印中碳基复合树脂的机械性能。
MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELETS COMPOSITE RESIN FABRICATED BY 3D PRINTING TECHNIQUE
Vat photopolymerization 3D printing, including LCD 3D printing, is a versatile method for the fabrication of complex structures with numerous applications. The aim of this study was to investigate the potential of graphene nanoplatelets (GNP) as an additive for improving the mechanical properties of carbon-filled composite resin for LCD 3D printing. Tensile testing was conducted on the 3D-printed samples using the ASTM D638 type V standard model. The results indicated that adding 0.1% w/w GNP with 20 sec of exposure time increased the elastic modulus of the specimen from 7.31±1.02 MPa to 9.38±0.37 MPa for x-orientation (horizontal) and from 7.62±0.93 MPa to 9.58±0.61 MPa for y-orientation (vertical). Furthermore, the maximum tensile strength increased from 3.87±1.13 MPa to 5.28±0.73 MPa for y-orientation and from 4.06±0.92 MPa to 5.49±0.49 MPa for x-orientation. These results demonstrate the efficacy of GNP as an effective additive for enhancing the mechanical properties of carbon-based composite resin in LCD 3D printing.