石灰石粉和偏高岭土的组合对砂浆抗压强度发展的影响

IF 0.2 Q4 MULTIDISCIPLINARY SCIENCES Suranaree Journal of Science and Technology Pub Date : 2023-12-13 DOI:10.55766/sujst-2023-05-e02979
Thwet Thwet Win, Thanyarat Buasiri, W. Pansuk, L. Prasittisopin
{"title":"石灰石粉和偏高岭土的组合对砂浆抗压强度发展的影响","authors":"Thwet Thwet Win, Thanyarat Buasiri, W. Pansuk, L. Prasittisopin","doi":"10.55766/sujst-2023-05-e02979","DOIUrl":null,"url":null,"abstract":"Cement production is a major contributor to carbon dioxide (CO2) emissions, and concrete is one of the most widely used building materials in the world. To reduce CO2 emissions from cement, supplementary cementing materials have been widely introduced in mortar and concrete mixtures. This research will explore the mechanism that determines the development of compressive strength in mortar made with partly substituted cement and a mixture of limestone powder and laboratory-quenching heat-treated kaolinite clay (also called metakaolin). Metakaolin is rich in Southeast Asian countries and needs further investigation to adopt in cement systems. Limestone powder and metakaolin constitute 45% of the binding cement ingredient by weight (dry). The strength was evaluated using mortar, and the microstructure was determined using paste. The results show that at 28 days, the compressive strength of mortar containing 45% cement substitution by 15% limestone powder and 30% metakaolin with 1% PCE (per B45S 1:2) was 97% relative to the reference mortar. However, due to the impurities in metakaolin, its synergistic interaction is limited, which results in the compressive strength being lower than anticipated.","PeriodicalId":43478,"journal":{"name":"Suranaree Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECTS OF COMBINATIONS OF LIMESTONE POWDER AND METAKAOLIN ON MORTAR COMPRESSIVE STRENGTH DEVELOPMENT\",\"authors\":\"Thwet Thwet Win, Thanyarat Buasiri, W. Pansuk, L. Prasittisopin\",\"doi\":\"10.55766/sujst-2023-05-e02979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cement production is a major contributor to carbon dioxide (CO2) emissions, and concrete is one of the most widely used building materials in the world. To reduce CO2 emissions from cement, supplementary cementing materials have been widely introduced in mortar and concrete mixtures. This research will explore the mechanism that determines the development of compressive strength in mortar made with partly substituted cement and a mixture of limestone powder and laboratory-quenching heat-treated kaolinite clay (also called metakaolin). Metakaolin is rich in Southeast Asian countries and needs further investigation to adopt in cement systems. Limestone powder and metakaolin constitute 45% of the binding cement ingredient by weight (dry). The strength was evaluated using mortar, and the microstructure was determined using paste. The results show that at 28 days, the compressive strength of mortar containing 45% cement substitution by 15% limestone powder and 30% metakaolin with 1% PCE (per B45S 1:2) was 97% relative to the reference mortar. However, due to the impurities in metakaolin, its synergistic interaction is limited, which results in the compressive strength being lower than anticipated.\",\"PeriodicalId\":43478,\"journal\":{\"name\":\"Suranaree Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suranaree Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55766/sujst-2023-05-e02979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-05-e02979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水泥生产是二氧化碳(CO2)排放的主要来源,而混凝土是世界上使用最广泛的建筑材料之一。为了减少水泥的二氧化碳排放量,人们在砂浆和混凝土混合物中广泛采用了辅助胶结材料。本研究将探讨决定用部分替代水泥和石灰石粉与实验室淬火热处理高岭土(又称偏高岭土)混合物制成的砂浆抗压强度发展的机理。偏高岭土在东南亚国家非常丰富,需要进一步研究在水泥系统中的应用。按重量计,石灰石粉和偏高岭土占粘结水泥成分的 45%(干)。使用砂浆对强度进行了评估,使用浆料对微观结构进行了测定。结果表明,在 28 天时,用 15%的石灰石粉和 30%的偏高岭土以及 1%的 PCE(按 B45S 1:2)替代 45%水泥的砂浆的抗压强度比参考砂浆高 97%。然而,由于偏高岭土中的杂质,其协同作用受到限制,导致抗压强度低于预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EFFECTS OF COMBINATIONS OF LIMESTONE POWDER AND METAKAOLIN ON MORTAR COMPRESSIVE STRENGTH DEVELOPMENT
Cement production is a major contributor to carbon dioxide (CO2) emissions, and concrete is one of the most widely used building materials in the world. To reduce CO2 emissions from cement, supplementary cementing materials have been widely introduced in mortar and concrete mixtures. This research will explore the mechanism that determines the development of compressive strength in mortar made with partly substituted cement and a mixture of limestone powder and laboratory-quenching heat-treated kaolinite clay (also called metakaolin). Metakaolin is rich in Southeast Asian countries and needs further investigation to adopt in cement systems. Limestone powder and metakaolin constitute 45% of the binding cement ingredient by weight (dry). The strength was evaluated using mortar, and the microstructure was determined using paste. The results show that at 28 days, the compressive strength of mortar containing 45% cement substitution by 15% limestone powder and 30% metakaolin with 1% PCE (per B45S 1:2) was 97% relative to the reference mortar. However, due to the impurities in metakaolin, its synergistic interaction is limited, which results in the compressive strength being lower than anticipated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Suranaree Journal of Science and Technology
Suranaree Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
0.30
自引率
50.00%
发文量
0
期刊最新文献
REDUCTION IN GREENHOUSE GAS EMISSIONS FROM COCONUT MILK PRODUCTION PLANTS IN THAILAND ADSORPTION OF DIBENZOXAZEPINE GAS ON TRANSITION METAL-DOPED SILICON CARBIDE NANOTUBES: A THEORETICAL INVESTIGATION PRELIMINARY DEVELOPMENT OF NURSES’ PRACTICE OF PEACEFUL END-OF-LIFE CARE INSTRUMENT (NP-PECI) PREVALENCE OF SICKLE CELL ANEMIA IN YOUTH BY COST EFFECTIVE STRATEGY ALONG WITH HPLC ADAPTIVE TRAFFIC SYSTEM CONTROLLERS IN TRAFFIC ENGINEERING : A SURVEY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1