利用水产养殖副产品生产的生物炭在去除水产养殖环境中的地奥司明中的吸附效率

IF 4.3 4区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Water Reuse Pub Date : 2023-12-12 DOI:10.2166/wrd.2023.129
Yadi Cui, Xi Chen, Chompoonuch Pitakrattanawong, Xiaolu Du, Liping Qiu, Huimin Xu, Jiazhang Chen, Shunlong Meng, Limin Fan, Chao Song
{"title":"利用水产养殖副产品生产的生物炭在去除水产养殖环境中的地奥司明中的吸附效率","authors":"Yadi Cui, Xi Chen, Chompoonuch Pitakrattanawong, Xiaolu Du, Liping Qiu, Huimin Xu, Jiazhang Chen, Shunlong Meng, Limin Fan, Chao Song","doi":"10.2166/wrd.2023.129","DOIUrl":null,"url":null,"abstract":"\n \n Aquaculture produces numerous by-products like aquatic plants, algae, and nutrient-enriched sediment annually, which are often discarded as waste, are not environmentally friendly, and are harmful to the environment. In this study, aquaculture by-products were utilized to prepare moss biochar at 500, 700, and 800 °C (BC500, BC700, and BC800, respectively); Elodea biochar (WBC800) at 800 °C; and sediment biochar (SBC800) at 800 °C. Characterization and experimental results showed that BC800 had the best adsorption effect on geosmin (GSM) under the same conditions; when using BC800 to treat GSM solution with a pH of 7, the adsorption efficiency of GSM was high (97.08%) under the conditions of dosage of 1.0 g, temperature of 25 °C, and adsorption time of 2 min. Adsorption is a multimolecular layer process that involves both physical aspects of porous adsorption and connections between chemical bonds. Biochar, derived from aquaculture by-products, is utilized to eliminate odorous substances in aquaculture environments, thereby promoting resource recycling.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment\",\"authors\":\"Yadi Cui, Xi Chen, Chompoonuch Pitakrattanawong, Xiaolu Du, Liping Qiu, Huimin Xu, Jiazhang Chen, Shunlong Meng, Limin Fan, Chao Song\",\"doi\":\"10.2166/wrd.2023.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Aquaculture produces numerous by-products like aquatic plants, algae, and nutrient-enriched sediment annually, which are often discarded as waste, are not environmentally friendly, and are harmful to the environment. In this study, aquaculture by-products were utilized to prepare moss biochar at 500, 700, and 800 °C (BC500, BC700, and BC800, respectively); Elodea biochar (WBC800) at 800 °C; and sediment biochar (SBC800) at 800 °C. Characterization and experimental results showed that BC800 had the best adsorption effect on geosmin (GSM) under the same conditions; when using BC800 to treat GSM solution with a pH of 7, the adsorption efficiency of GSM was high (97.08%) under the conditions of dosage of 1.0 g, temperature of 25 °C, and adsorption time of 2 min. Adsorption is a multimolecular layer process that involves both physical aspects of porous adsorption and connections between chemical bonds. Biochar, derived from aquaculture by-products, is utilized to eliminate odorous substances in aquaculture environments, thereby promoting resource recycling.\",\"PeriodicalId\":34727,\"journal\":{\"name\":\"Water Reuse\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Reuse\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2023.129\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wrd.2023.129","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

水产养殖每年会产生大量副产品,如水生植物、藻类和营养丰富的沉积物,这些副产品通常被作为废物丢弃,不环保,对环境有害。本研究利用水产养殖副产品制备了温度分别为 500、700 和 800 ℃ 的苔藓生物炭(BC500、BC700 和 BC800)、温度为 800 ℃ 的裙带菜生物炭(WBC800)和温度为 800 ℃ 的沉积物生物炭(SBC800)。表征和实验结果表明,在相同条件下,BC800 对地黄素(GSM)的吸附效果最好;用 BC800 处理 pH 值为 7 的地黄素溶液时,在用量为 1.0 克、温度为 25 ℃、吸附时间为 2 分钟的条件下,地黄素的吸附效率很高(97.08%)。吸附是一个多分子层过程,涉及多孔吸附的物理方面和化学键之间的联系。生物炭取自水产养殖副产品,可用于消除水产养殖环境中的异味物质,从而促进资源循环利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment
Aquaculture produces numerous by-products like aquatic plants, algae, and nutrient-enriched sediment annually, which are often discarded as waste, are not environmentally friendly, and are harmful to the environment. In this study, aquaculture by-products were utilized to prepare moss biochar at 500, 700, and 800 °C (BC500, BC700, and BC800, respectively); Elodea biochar (WBC800) at 800 °C; and sediment biochar (SBC800) at 800 °C. Characterization and experimental results showed that BC800 had the best adsorption effect on geosmin (GSM) under the same conditions; when using BC800 to treat GSM solution with a pH of 7, the adsorption efficiency of GSM was high (97.08%) under the conditions of dosage of 1.0 g, temperature of 25 °C, and adsorption time of 2 min. Adsorption is a multimolecular layer process that involves both physical aspects of porous adsorption and connections between chemical bonds. Biochar, derived from aquaculture by-products, is utilized to eliminate odorous substances in aquaculture environments, thereby promoting resource recycling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Reuse
Water Reuse Multiple-
CiteScore
6.20
自引率
8.90%
发文量
0
审稿时长
7 weeks
期刊最新文献
The use of innovative technologies to improve treated wastewater irrigation of olive trees in the Souss-Massa region, Morocco A review: The state-of-the-art of arsenic removal in wastewater Treatment of greywater using a non-aerated combined horizontal and vertical flow constructed wetland How much does reclaimed wastewater cost? A comprehensive analysis for irrigation uses in the European Mediterranean context Application of the multi-wavelength UV-LED/chlorine process to improve reverse osmosis membrane performance for reused water treatment in the steel industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1