Dairon Pleasant, Connor Gavin, Garrett Redden, Jacquelyn K. S. Nagel, Hao Zhang
{"title":"增材制造材料结构的生物启发设计","authors":"Dairon Pleasant, Connor Gavin, Garrett Redden, Jacquelyn K. S. Nagel, Hao Zhang","doi":"10.3390/machines11121081","DOIUrl":null,"url":null,"abstract":"This research explores the enhancement of mechanical properties in material architectures, such as strength-to-weight ratio and resilience, through the inspiration of natural systems. Historically, designs for additive manufacturing have relied on simple, repetitive structures like honeycombs, often leading to unnecessary material expenditure. This study aims to examine the compressive mechanical attributes of designs inspired by natural systems, including bird nests, cocoons, and the layered structure of skull bones. Through a comparative analysis, we assessed peak load capacity, strength-to-weight ratio, and resilience between these bioinspired architectures and a standard 3D infill pattern utilized in additive manufacturing. Findings indicate that structures inspired by sandwiched bone layers excel in resilience and peak load, whereas those based on bird nests are notably lighter and, in some cases, exhibit the highest strength-to-weight ratio. The insights provided here will help design engineers with empirically backed mechanical properties of bioinspired architectures, offering a novel methodology for the development of material systems influenced by biological paradigms.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"17 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Design of Material Architecture for Additive Manufacturing\",\"authors\":\"Dairon Pleasant, Connor Gavin, Garrett Redden, Jacquelyn K. S. Nagel, Hao Zhang\",\"doi\":\"10.3390/machines11121081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explores the enhancement of mechanical properties in material architectures, such as strength-to-weight ratio and resilience, through the inspiration of natural systems. Historically, designs for additive manufacturing have relied on simple, repetitive structures like honeycombs, often leading to unnecessary material expenditure. This study aims to examine the compressive mechanical attributes of designs inspired by natural systems, including bird nests, cocoons, and the layered structure of skull bones. Through a comparative analysis, we assessed peak load capacity, strength-to-weight ratio, and resilience between these bioinspired architectures and a standard 3D infill pattern utilized in additive manufacturing. Findings indicate that structures inspired by sandwiched bone layers excel in resilience and peak load, whereas those based on bird nests are notably lighter and, in some cases, exhibit the highest strength-to-weight ratio. The insights provided here will help design engineers with empirically backed mechanical properties of bioinspired architectures, offering a novel methodology for the development of material systems influenced by biological paradigms.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bioinspired Design of Material Architecture for Additive Manufacturing
This research explores the enhancement of mechanical properties in material architectures, such as strength-to-weight ratio and resilience, through the inspiration of natural systems. Historically, designs for additive manufacturing have relied on simple, repetitive structures like honeycombs, often leading to unnecessary material expenditure. This study aims to examine the compressive mechanical attributes of designs inspired by natural systems, including bird nests, cocoons, and the layered structure of skull bones. Through a comparative analysis, we assessed peak load capacity, strength-to-weight ratio, and resilience between these bioinspired architectures and a standard 3D infill pattern utilized in additive manufacturing. Findings indicate that structures inspired by sandwiched bone layers excel in resilience and peak load, whereas those based on bird nests are notably lighter and, in some cases, exhibit the highest strength-to-weight ratio. The insights provided here will help design engineers with empirically backed mechanical properties of bioinspired architectures, offering a novel methodology for the development of material systems influenced by biological paradigms.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.