电晕放电下介质液滴的玫瑰窗不稳定性研究

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Mechanics Pub Date : 2023-12-11 DOI:10.1093/jom/ufad041
Yi-Jen Chiou, Chiang Fu, Ying-Hao Liao
{"title":"电晕放电下介质液滴的玫瑰窗不稳定性研究","authors":"Yi-Jen Chiou, Chiang Fu, Ying-Hao Liao","doi":"10.1093/jom/ufad041","DOIUrl":null,"url":null,"abstract":"\n The rose-window instability (RWI) is an electrohydrodynamic instability occurring in a dielectric liquid subjected to an electric field. This instability leads to variations in the shape of the liquid and its spreading. Despite the significance of the RWI, there have been limited studies, especially concerning dielectric droplets. Thus, the aim of this study is to investigate the characteristic of rose-window instability in silicone oil droplets exposed to corona discharge. The study examines the effects of electrode gap, applied voltage, and viscosity on the formation of RWI. Increasing the electrode gap results in an enlarged rose-window lattice, accompanied by a decrease in the number of lattices. This can be attributed to a more diffusive ionic flow and a more pronounced inhomogeneity of charge distribution across the droplet surface. On the other hand, higher voltages, which enhances the ionic flow, accelerate the formation of RWI and lead to a larger inner diameter. Viscosity has little influence on the geometry of the lattice. However, droplets with low viscosity exhibit a more rapid development of instability. The observation suggests that the small Ohnesorge number, influenced by factors such as viscosity and surface tension, may play a role in the development of the rose-window instability. The influence of surface tension, although not the main focus of the study, cannot be completely disregarded as it is interconnected with the Ohnesorge number and may contribute to the observed results.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"121 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Rose-Window Instability in a Dielectric Droplet Exposed to Corona Discharge\",\"authors\":\"Yi-Jen Chiou, Chiang Fu, Ying-Hao Liao\",\"doi\":\"10.1093/jom/ufad041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rose-window instability (RWI) is an electrohydrodynamic instability occurring in a dielectric liquid subjected to an electric field. This instability leads to variations in the shape of the liquid and its spreading. Despite the significance of the RWI, there have been limited studies, especially concerning dielectric droplets. Thus, the aim of this study is to investigate the characteristic of rose-window instability in silicone oil droplets exposed to corona discharge. The study examines the effects of electrode gap, applied voltage, and viscosity on the formation of RWI. Increasing the electrode gap results in an enlarged rose-window lattice, accompanied by a decrease in the number of lattices. This can be attributed to a more diffusive ionic flow and a more pronounced inhomogeneity of charge distribution across the droplet surface. On the other hand, higher voltages, which enhances the ionic flow, accelerate the formation of RWI and lead to a larger inner diameter. Viscosity has little influence on the geometry of the lattice. However, droplets with low viscosity exhibit a more rapid development of instability. The observation suggests that the small Ohnesorge number, influenced by factors such as viscosity and surface tension, may play a role in the development of the rose-window instability. The influence of surface tension, although not the main focus of the study, cannot be completely disregarded as it is interconnected with the Ohnesorge number and may contribute to the observed results.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufad041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

玫瑰窗不稳定性(RWI)是电介质液体在电场作用下产生的一种电流体力学不稳定性。这种不稳定性会导致液体形状的变化及其扩散。尽管 RWI 非常重要,但相关研究却非常有限,尤其是关于电介质液滴的研究。因此,本研究旨在调查暴露于电晕放电的硅油液滴的玫瑰窗不稳定性特征。研究考察了电极间隙、施加电压和粘度对形成 RWI 的影响。增加电极间隙会导致玫瑰窗晶格扩大,同时晶格数量减少。这可归因于离子流的扩散性更强以及液滴表面电荷分布的不均匀性更明显。另一方面,较高的电压会增强离子流动,加速 RWI 的形成,并导致较大的内径。粘度对晶格几何形状的影响很小。然而,低粘度液滴的不稳定性发展更快。这一观察结果表明,受粘度和表面张力等因素的影响,较小的奥内索尔格数可能在玫瑰窗不稳定性的发展过程中起到了一定的作用。表面张力的影响虽然不是研究的重点,但也不能完全忽视,因为它与欧内索尔格数相互关联,并可能对观察到的结果有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study on Rose-Window Instability in a Dielectric Droplet Exposed to Corona Discharge
The rose-window instability (RWI) is an electrohydrodynamic instability occurring in a dielectric liquid subjected to an electric field. This instability leads to variations in the shape of the liquid and its spreading. Despite the significance of the RWI, there have been limited studies, especially concerning dielectric droplets. Thus, the aim of this study is to investigate the characteristic of rose-window instability in silicone oil droplets exposed to corona discharge. The study examines the effects of electrode gap, applied voltage, and viscosity on the formation of RWI. Increasing the electrode gap results in an enlarged rose-window lattice, accompanied by a decrease in the number of lattices. This can be attributed to a more diffusive ionic flow and a more pronounced inhomogeneity of charge distribution across the droplet surface. On the other hand, higher voltages, which enhances the ionic flow, accelerate the formation of RWI and lead to a larger inner diameter. Viscosity has little influence on the geometry of the lattice. However, droplets with low viscosity exhibit a more rapid development of instability. The observation suggests that the small Ohnesorge number, influenced by factors such as viscosity and surface tension, may play a role in the development of the rose-window instability. The influence of surface tension, although not the main focus of the study, cannot be completely disregarded as it is interconnected with the Ohnesorge number and may contribute to the observed results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
期刊最新文献
Structural damage identification using an optimization technique based on generalized flexibility matrix Solder die attach lifetime characterization of SOT-227 power MOSFET module in a three-phase inverter under power cycling Data-driven numerical simulation with extended Kalman filtering and long short-term memory networks for highway traffic flow prediction Nanoparticles separation by different conditions at asymmetric flow field- flow fractionation Mechanical Instability of Heavy Column with Rotational Spring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1