在 0.5 兆盐酸介质中用作碳钢缓蚀剂的红茶废料

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2023-12-06 DOI:10.22146/ijc.84891
Meyliana Wulandari, Zahratussaadah Zahratussaadah, N. Nofrizal, Pandian Bothi Radja, Andreas Andreas
{"title":"在 0.5 兆盐酸介质中用作碳钢缓蚀剂的红茶废料","authors":"Meyliana Wulandari, Zahratussaadah Zahratussaadah, N. Nofrizal, Pandian Bothi Radja, Andreas Andreas","doi":"10.22146/ijc.84891","DOIUrl":null,"url":null,"abstract":"Indonesian black tea (BT) waste was utilized as a green corrosion inhibitor for carbon steel (CS) corrosion in a 0.5 M HCl medium. The BT extract was characterized using Fourier transform infra-red. The corrosion inhibition evaluation was studied using conventional weight loss methods, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Further, scanning electron microscopy-energy dispersive X-ray was applied to analyze the surface morphology of pure CS before and after contact with the inhibitor extract. After the addition of inhibitors, CS surface showed a better morphological transformation. The effect of oxygen contamination has also been studied in this research. The corrosion measurements of weight loss, potentiodynamic polarization, and EIS showed that the %IE BT extract was 84.70; 70.00; 72.80% at 0.20 g/L of inhibitor concentration. Adsorption isotherm studies have determined the reaction mechanism between the CS and inhibitor; in which the adsorption follows Langmuir. Gibbs free energy for the three methods is −16.62; −25.34; −24.35 kJ/mol, indicating electrostatic interaction (physisorption) between the metal surface and inhibitor. SEM and focus ion beam show that oxygen contamination can increase the corrosion rate resulting in CS damage. It shows that tea waste products can be used as an alternative corrosion inhibitor. ","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium\",\"authors\":\"Meyliana Wulandari, Zahratussaadah Zahratussaadah, N. Nofrizal, Pandian Bothi Radja, Andreas Andreas\",\"doi\":\"10.22146/ijc.84891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesian black tea (BT) waste was utilized as a green corrosion inhibitor for carbon steel (CS) corrosion in a 0.5 M HCl medium. The BT extract was characterized using Fourier transform infra-red. The corrosion inhibition evaluation was studied using conventional weight loss methods, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Further, scanning electron microscopy-energy dispersive X-ray was applied to analyze the surface morphology of pure CS before and after contact with the inhibitor extract. After the addition of inhibitors, CS surface showed a better morphological transformation. The effect of oxygen contamination has also been studied in this research. The corrosion measurements of weight loss, potentiodynamic polarization, and EIS showed that the %IE BT extract was 84.70; 70.00; 72.80% at 0.20 g/L of inhibitor concentration. Adsorption isotherm studies have determined the reaction mechanism between the CS and inhibitor; in which the adsorption follows Langmuir. Gibbs free energy for the three methods is −16.62; −25.34; −24.35 kJ/mol, indicating electrostatic interaction (physisorption) between the metal surface and inhibitor. SEM and focus ion beam show that oxygen contamination can increase the corrosion rate resulting in CS damage. It shows that tea waste products can be used as an alternative corrosion inhibitor. \",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.84891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.84891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚红茶(BT)废料被用作 0.5 M HCl 培养基中碳钢(CS)腐蚀的绿色缓蚀剂。傅立叶变换红外光谱对红茶提取物进行了表征。采用传统的失重法、电位极化法和电化学阻抗光谱法(EIS)对缓蚀性进行了研究。此外,还利用扫描电子显微镜-能量色散 X 射线分析了纯 CS 与抑制剂提取物接触前后的表面形态。加入抑制剂后,CS 表面的形态发生了较好的变化。本研究还对氧气污染的影响进行了研究。失重、电位极化和 EIS 等腐蚀测量结果表明,在抑制剂浓度为 0.20 g/L 时,BT 提取物的 %IE 分别为 84.70%、70.00%、72.80%。吸附等温线研究确定了 CS 与抑制剂之间的反应机理,其中吸附遵循 Langmuir。三种方法的吉布斯自由能分别为 -16.62; -25.34; -24.35 kJ/mol,表明金属表面与抑制剂之间存在静电作用(物理吸附)。扫描电子显微镜和聚焦离子束显示,氧污染会增加腐蚀速度,导致 CS 损坏。这表明茶叶废品可用作替代缓蚀剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium
Indonesian black tea (BT) waste was utilized as a green corrosion inhibitor for carbon steel (CS) corrosion in a 0.5 M HCl medium. The BT extract was characterized using Fourier transform infra-red. The corrosion inhibition evaluation was studied using conventional weight loss methods, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Further, scanning electron microscopy-energy dispersive X-ray was applied to analyze the surface morphology of pure CS before and after contact with the inhibitor extract. After the addition of inhibitors, CS surface showed a better morphological transformation. The effect of oxygen contamination has also been studied in this research. The corrosion measurements of weight loss, potentiodynamic polarization, and EIS showed that the %IE BT extract was 84.70; 70.00; 72.80% at 0.20 g/L of inhibitor concentration. Adsorption isotherm studies have determined the reaction mechanism between the CS and inhibitor; in which the adsorption follows Langmuir. Gibbs free energy for the three methods is −16.62; −25.34; −24.35 kJ/mol, indicating electrostatic interaction (physisorption) between the metal surface and inhibitor. SEM and focus ion beam show that oxygen contamination can increase the corrosion rate resulting in CS damage. It shows that tea waste products can be used as an alternative corrosion inhibitor. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Pseudoternary Phase Diagram and Antibacterial Activity of Microemulsion-Based Citronella Oil Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method Surface Properties of Graphene and Graphene Oxide Aerogels for Energy Storage Applications Synthesis, Characterization, and Control Release of Zinc Layered Nitrate Intercalated with Beta-Napthoxyacetic Acid (BNOA) Nanocomposite Evaluation of Lead Ion in the Wastewater of the Lifting and Treatment Stations Using ICP-MS and CPE Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1