利用混合元搜索模型提高医疗物联网中医疗数据的安全性能

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2023-12-01 DOI:10.34768/amcs-2023-0044
Kanneboina Ashok, Sundaram Gopikrishnan
{"title":"利用混合元搜索模型提高医疗物联网中医疗数据的安全性能","authors":"Kanneboina Ashok, Sundaram Gopikrishnan","doi":"10.34768/amcs-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract Internet of medical things (IoMT) network design integrates multiple healthcare devices to improve patient monitoring and real-time care operations. These networks use a wide range of devices to make critical patient care decisions. Thus, researchers have deployed multiple high-security frameworks with encryption, hashing, privacy preservation, attribute based access control, and more to secure these devices and networks. However, real-time monitoring security models are either complex or unreconfigurable. The existing models’ security depends on their internal configuration, which is rarely extensible for new attacks. This paper introduces a hybrid metaheuristic model to improve healthcare IoT security performance. The blockchain based model can be dynamically reconfigured by changing its encryption and hashing standards. The proposed model then continuously optimizes blockchain based IoMT deployment security and QoS performance using elephant herding optimization (EHO) and grey wolf optimization (GWO). Dual fitness functions improve security and QoS for multiple attack types in the proposed model. These fitness functions help reconfigure encryption and hashing parameters to improve performance under different attack configurations. The hybrid integration of EH and GW optimization models can tune blockchain based deployment for dynamic attack scenarios, making it scalable and useful for real-time scenarios. The model is tested under masquerading, Sybil, man-in-the-middle, and DDoS attacks and is compared with state-of-the-art models. The proposed model has 8.3% faster attack detection and mitigation, 5.9% better throughput, a 6.5% higher packet delivery ratio, and 10.3% better network consistency under attack scenarios. This performance enables real-time healthcare use cases for the proposed model.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"359 1","pages":"623 - 636"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model\",\"authors\":\"Kanneboina Ashok, Sundaram Gopikrishnan\",\"doi\":\"10.34768/amcs-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Internet of medical things (IoMT) network design integrates multiple healthcare devices to improve patient monitoring and real-time care operations. These networks use a wide range of devices to make critical patient care decisions. Thus, researchers have deployed multiple high-security frameworks with encryption, hashing, privacy preservation, attribute based access control, and more to secure these devices and networks. However, real-time monitoring security models are either complex or unreconfigurable. The existing models’ security depends on their internal configuration, which is rarely extensible for new attacks. This paper introduces a hybrid metaheuristic model to improve healthcare IoT security performance. The blockchain based model can be dynamically reconfigured by changing its encryption and hashing standards. The proposed model then continuously optimizes blockchain based IoMT deployment security and QoS performance using elephant herding optimization (EHO) and grey wolf optimization (GWO). Dual fitness functions improve security and QoS for multiple attack types in the proposed model. These fitness functions help reconfigure encryption and hashing parameters to improve performance under different attack configurations. The hybrid integration of EH and GW optimization models can tune blockchain based deployment for dynamic attack scenarios, making it scalable and useful for real-time scenarios. The model is tested under masquerading, Sybil, man-in-the-middle, and DDoS attacks and is compared with state-of-the-art models. The proposed model has 8.3% faster attack detection and mitigation, 5.9% better throughput, a 6.5% higher packet delivery ratio, and 10.3% better network consistency under attack scenarios. This performance enables real-time healthcare use cases for the proposed model.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"359 1\",\"pages\":\"623 - 636\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0044\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 医疗物联网(IoMT)网络设计整合了多种医疗保健设备,以改善患者监控和实时护理操作。这些网络使用各种设备做出关键的病人护理决策。因此,研究人员部署了多种高安全性框架,包括加密、哈希算法、隐私保护、基于属性的访问控制等,以确保这些设备和网络的安全。然而,实时监控安全模型要么复杂,要么不可配置。现有模型的安全性取决于其内部配置,很少能针对新的攻击进行扩展。本文介绍了一种混合元启发式模型,以提高医疗保健物联网的安全性能。基于区块链的模型可通过改变其加密和散列标准进行动态重新配置。然后,所提出的模型利用大象放牧优化(EHO)和灰狼优化(GWO)不断优化基于区块链的 IoMT 部署的安全性和 QoS 性能。在所提出的模型中,双重适配函数针对多种攻击类型提高了安全性和 QoS。这些适应度函数有助于重新配置加密和散列参数,以提高不同攻击配置下的性能。EH 和 GW 优化模型的混合集成可以针对动态攻击场景调整基于区块链的部署,使其具有可扩展性并适用于实时场景。该模型在伪装、Sybil、中间人和 DDoS 攻击下进行了测试,并与最先进的模型进行了比较。在攻击场景下,拟议模型的攻击检测和缓解速度提高了 8.3%,吞吐量提高了 5.9%,数据包交付率提高了 6.5%,网络一致性提高了 10.3%。这种性能使拟议模型能够用于实时医疗保健案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model
Abstract Internet of medical things (IoMT) network design integrates multiple healthcare devices to improve patient monitoring and real-time care operations. These networks use a wide range of devices to make critical patient care decisions. Thus, researchers have deployed multiple high-security frameworks with encryption, hashing, privacy preservation, attribute based access control, and more to secure these devices and networks. However, real-time monitoring security models are either complex or unreconfigurable. The existing models’ security depends on their internal configuration, which is rarely extensible for new attacks. This paper introduces a hybrid metaheuristic model to improve healthcare IoT security performance. The blockchain based model can be dynamically reconfigured by changing its encryption and hashing standards. The proposed model then continuously optimizes blockchain based IoMT deployment security and QoS performance using elephant herding optimization (EHO) and grey wolf optimization (GWO). Dual fitness functions improve security and QoS for multiple attack types in the proposed model. These fitness functions help reconfigure encryption and hashing parameters to improve performance under different attack configurations. The hybrid integration of EH and GW optimization models can tune blockchain based deployment for dynamic attack scenarios, making it scalable and useful for real-time scenarios. The model is tested under masquerading, Sybil, man-in-the-middle, and DDoS attacks and is compared with state-of-the-art models. The proposed model has 8.3% faster attack detection and mitigation, 5.9% better throughput, a 6.5% higher packet delivery ratio, and 10.3% better network consistency under attack scenarios. This performance enables real-time healthcare use cases for the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1