Mingyue Xiao , Ronghua Luo , Qinghua Liang , Honglv Jiang , Yanli Liu , Guoqiang Xu , Hongwei Gao , Yongtang Zheng , Qiongming Xu , Shilin Yang
{"title":"青蒿甙 B4 可抑制 SARS-CoV-2 在体外和体内的复制","authors":"Mingyue Xiao , Ronghua Luo , Qinghua Liang , Honglv Jiang , Yanli Liu , Guoqiang Xu , Hongwei Gao , Yongtang Zheng , Qiongming Xu , Shilin Yang","doi":"10.1016/j.chmed.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from <em>Pulsatilla chinensis</em>, inhibited influenza virus FM1 or <em>Klebsiella pneumoniae</em>-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 <em>in vivo</em> and <em>in vitro</em>.</p></div><div><h3>Methods</h3><p>The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for <em>in vitro</em> assays. The antiviral effect of AB4 <em>in vivo</em> was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining.</p></div><div><h3>Results</h3><p>The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. <em>In vivo</em> antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response <em>via</em> the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism.</p></div><div><h3>Conclusion</h3><p>Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 1","pages":"Pages 106-112"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423001089/pdfft?md5=a228a84cdfef70160b6bb41e1ac28864&pid=1-s2.0-S1674638423001089-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo\",\"authors\":\"Mingyue Xiao , Ronghua Luo , Qinghua Liang , Honglv Jiang , Yanli Liu , Guoqiang Xu , Hongwei Gao , Yongtang Zheng , Qiongming Xu , Shilin Yang\",\"doi\":\"10.1016/j.chmed.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from <em>Pulsatilla chinensis</em>, inhibited influenza virus FM1 or <em>Klebsiella pneumoniae</em>-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 <em>in vivo</em> and <em>in vitro</em>.</p></div><div><h3>Methods</h3><p>The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for <em>in vitro</em> assays. The antiviral effect of AB4 <em>in vivo</em> was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining.</p></div><div><h3>Results</h3><p>The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. <em>In vivo</em> antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response <em>via</em> the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism.</p></div><div><h3>Conclusion</h3><p>Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.</p></div>\",\"PeriodicalId\":9916,\"journal\":{\"name\":\"Chinese Herbal Medicines\",\"volume\":\"16 1\",\"pages\":\"Pages 106-112\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674638423001089/pdfft?md5=a228a84cdfef70160b6bb41e1ac28864&pid=1-s2.0-S1674638423001089-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Herbal Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674638423001089\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638423001089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo
Objective
Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro.
Methods
The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining.
Results
The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism.
Conclusion
Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.
期刊介绍:
Chinese Herbal Medicines is intended to disseminate the latest developments and research progress in traditional and herbal medical sciences to researchers, practitioners, academics and administrators worldwide in the field of traditional and herbal medicines. The journal's international coverage ensures that research and progress from all regions of the world are widely included.
CHM is a core journal of Chinese science and technology. The journal entered into the ESCI database in 2017, and then was included in PMC, Scopus and other important international search systems. In 2019, CHM was successfully selected for the “China Science and Technology Journal Excellence Action Plan” project, which has markedly improved its international influence and industry popularity. CHM obtained the first impact factor of 3.8 in Journal Citation Reports (JCR) in 2023.