K. Kamli, Z. Hadef, O. Kamli, B. Chouial, M. Aida, Hani Hadjoudja, Samir Labiod
{"title":"沉积时间对超声喷雾热解法合成的 CuxZnyS 薄膜性能的影响","authors":"K. Kamli, Z. Hadef, O. Kamli, B. Chouial, M. Aida, Hani Hadjoudja, Samir Labiod","doi":"10.4028/p-dpoy5x","DOIUrl":null,"url":null,"abstract":"Copper Zinc Sulfide CuxZnyS (CZS) thin films with different thicknesses were prepared by the ultrasonic spray pyrolysis method (USP). The influence of deposition time on the structural, morphological, and optical properties of the thin films has been investigated. XRD styles revealed the formation of ternary CZS films. Synchrotron X-ray diffraction measurements confirmed the presence of the two phases CuS and ZnS, which form the ternary compound CZS. Crystallite size increases from 75.29 nm to 105.46 nm as deposition time increases whereas the strain parameter decreases from 6.27*10-4 to 3.28*10-4. The obtained SEM images show that CZS thin films have a dense and rough surface topography. Spectrometric analysis of the deposited films confirmed the alloy nature of the elaborated films, whereas the corresponding values of band gaps were in the range of 3.28 to 3.17 eV. Results show that increasing the deposition time enhances the optical properties. Furthermore, the electrical properties of CZS films are influenced by the deposition time and phase transition. Significant improvements on these properties were obtained when the thin film thickness increased: the resistivity decreased from 95.10 to 0.12 Ω cm the carrier centration increased from 4.03×1021 to 14.07×1021 cm−3 and the mobility varied from 0.83 to 18.75 cm2 V−1 S−1.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"92 18","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Deposition Time on the Properties of CuxZnyS Thin Films Synthesized by Ultrasonic Spray Pyrolysis\",\"authors\":\"K. Kamli, Z. Hadef, O. Kamli, B. Chouial, M. Aida, Hani Hadjoudja, Samir Labiod\",\"doi\":\"10.4028/p-dpoy5x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper Zinc Sulfide CuxZnyS (CZS) thin films with different thicknesses were prepared by the ultrasonic spray pyrolysis method (USP). The influence of deposition time on the structural, morphological, and optical properties of the thin films has been investigated. XRD styles revealed the formation of ternary CZS films. Synchrotron X-ray diffraction measurements confirmed the presence of the two phases CuS and ZnS, which form the ternary compound CZS. Crystallite size increases from 75.29 nm to 105.46 nm as deposition time increases whereas the strain parameter decreases from 6.27*10-4 to 3.28*10-4. The obtained SEM images show that CZS thin films have a dense and rough surface topography. Spectrometric analysis of the deposited films confirmed the alloy nature of the elaborated films, whereas the corresponding values of band gaps were in the range of 3.28 to 3.17 eV. Results show that increasing the deposition time enhances the optical properties. Furthermore, the electrical properties of CZS films are influenced by the deposition time and phase transition. Significant improvements on these properties were obtained when the thin film thickness increased: the resistivity decreased from 95.10 to 0.12 Ω cm the carrier centration increased from 4.03×1021 to 14.07×1021 cm−3 and the mobility varied from 0.83 to 18.75 cm2 V−1 S−1.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"92 18\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-dpoy5x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-dpoy5x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Deposition Time on the Properties of CuxZnyS Thin Films Synthesized by Ultrasonic Spray Pyrolysis
Copper Zinc Sulfide CuxZnyS (CZS) thin films with different thicknesses were prepared by the ultrasonic spray pyrolysis method (USP). The influence of deposition time on the structural, morphological, and optical properties of the thin films has been investigated. XRD styles revealed the formation of ternary CZS films. Synchrotron X-ray diffraction measurements confirmed the presence of the two phases CuS and ZnS, which form the ternary compound CZS. Crystallite size increases from 75.29 nm to 105.46 nm as deposition time increases whereas the strain parameter decreases from 6.27*10-4 to 3.28*10-4. The obtained SEM images show that CZS thin films have a dense and rough surface topography. Spectrometric analysis of the deposited films confirmed the alloy nature of the elaborated films, whereas the corresponding values of band gaps were in the range of 3.28 to 3.17 eV. Results show that increasing the deposition time enhances the optical properties. Furthermore, the electrical properties of CZS films are influenced by the deposition time and phase transition. Significant improvements on these properties were obtained when the thin film thickness increased: the resistivity decreased from 95.10 to 0.12 Ω cm the carrier centration increased from 4.03×1021 to 14.07×1021 cm−3 and the mobility varied from 0.83 to 18.75 cm2 V−1 S−1.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.