镶嵌光栅直边衍射效应的抑制方法研究

Shuncheng Sun, Xinrong Chen, Chao-ming Li, Gaoxiang Xu, Tao Wu, Jiayao Pan, Lei Sun
{"title":"镶嵌光栅直边衍射效应的抑制方法研究","authors":"Shuncheng Sun, Xinrong Chen, Chao-ming Li, Gaoxiang Xu, Tao Wu, Jiayao Pan, Lei Sun","doi":"10.1117/12.3005771","DOIUrl":null,"url":null,"abstract":"The diffraction characteristics of amplitude and phase-type soft-edge apertures with super-Gaussian transmittance at the gap of mosaic grating are investigated in this article. A well-designed soft-edge apertures can effectively suppress the Fresnel straight-edge diffraction intensity distribution at a certain transmission distance and consequently homogenize the overall light intensity on the image plane. We use the PV value, which is the difference between the maximum intensity of Fresnel diffraction and the initial incident intensity, as the evaluation index of diffraction intensity homogenization. Compared with use of the hard-edge aperture, the PV value reduces from 0.6 to 0.009 and 0.051 at the distance of 0.5m and 1m respectively with use of the super-Gaussian amplitude type soft-edge apertures designed by us. While using the super-Gaussian phase type soft-edge apertures designed by us, the PV value reduces from 0.6 to 0.053 and 0.06 at the distance of 0.5m and 1m respectively.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on suppression method of straight edge diffraction effect of mosaic grating\",\"authors\":\"Shuncheng Sun, Xinrong Chen, Chao-ming Li, Gaoxiang Xu, Tao Wu, Jiayao Pan, Lei Sun\",\"doi\":\"10.1117/12.3005771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffraction characteristics of amplitude and phase-type soft-edge apertures with super-Gaussian transmittance at the gap of mosaic grating are investigated in this article. A well-designed soft-edge apertures can effectively suppress the Fresnel straight-edge diffraction intensity distribution at a certain transmission distance and consequently homogenize the overall light intensity on the image plane. We use the PV value, which is the difference between the maximum intensity of Fresnel diffraction and the initial incident intensity, as the evaluation index of diffraction intensity homogenization. Compared with use of the hard-edge aperture, the PV value reduces from 0.6 to 0.009 and 0.051 at the distance of 0.5m and 1m respectively with use of the super-Gaussian amplitude type soft-edge apertures designed by us. While using the super-Gaussian phase type soft-edge apertures designed by us, the PV value reduces from 0.6 to 0.053 and 0.06 at the distance of 0.5m and 1m respectively.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3005771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有超高斯透射率的振幅型和相位型软边光圈在镶嵌光栅间隙处的衍射特性。设计良好的软边光圈能有效抑制一定传输距离上的菲涅尔直边衍射强度分布,从而使图像平面上的整体光强均匀化。我们使用菲涅尔衍射最大强度与初始入射强度之差的 PV 值作为衍射强度均匀化的评价指标。与使用硬边光圈相比,使用我们设计的超高斯振幅型软边光圈后,在 0.5 米和 1 米的距离上,PV 值分别从 0.6 降至 0.009 和 0.051。使用我们设计的超高斯相位型软边缘光圈后,在 0.5 米和 1 米的距离上,PV 值分别从 0.6 降至 0.053 和 0.06。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on suppression method of straight edge diffraction effect of mosaic grating
The diffraction characteristics of amplitude and phase-type soft-edge apertures with super-Gaussian transmittance at the gap of mosaic grating are investigated in this article. A well-designed soft-edge apertures can effectively suppress the Fresnel straight-edge diffraction intensity distribution at a certain transmission distance and consequently homogenize the overall light intensity on the image plane. We use the PV value, which is the difference between the maximum intensity of Fresnel diffraction and the initial incident intensity, as the evaluation index of diffraction intensity homogenization. Compared with use of the hard-edge aperture, the PV value reduces from 0.6 to 0.009 and 0.051 at the distance of 0.5m and 1m respectively with use of the super-Gaussian amplitude type soft-edge apertures designed by us. While using the super-Gaussian phase type soft-edge apertures designed by us, the PV value reduces from 0.6 to 0.053 and 0.06 at the distance of 0.5m and 1m respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1