{"title":"基于异步校准电热 MEMS 镜的微型傅立叶变换光谱仪","authors":"Ruifan Zhao, Qiangqiang Liu, Chao Chen, Jiqiang Cao, Yuan Xue, Donglin Wang, Qian Chen, Huikai Xie","doi":"10.1117/12.3008011","DOIUrl":null,"url":null,"abstract":"In a MEMS mirror-based dual interference Fourier transform spectrometer (FTS) with a laser interferometer as the position sensing mechanism, making the two interferometers coaxial is very challenging. To solve this problem, a single interference MEMS FTS based on asynchronous calibration is designed. This single interference FTS uses a dichroic mirror to couple a laser beam and a broadband light beam into the same interferometer. Since the two optical beams share the same optical path, they will experience the same change when the position of any optical component along the optical path is adjusted. In data acquisition, the two interference signals are acquired asynchronously by the same InGaAs photodetector. This asynchronous calibration can effectively eliminate the laser coupling issue. According to the experimental results, compared with the dual interference spectrometer, the proposed spectrometer based on asynchronous calibration can improve the spectral repeatability and make the system simpler and lower power consumption.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":"228 2","pages":"129620G - 129620G-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miniature Fourier transform spectrometer based on an electrothermal MEMS mirror with asynchronous calibration\",\"authors\":\"Ruifan Zhao, Qiangqiang Liu, Chao Chen, Jiqiang Cao, Yuan Xue, Donglin Wang, Qian Chen, Huikai Xie\",\"doi\":\"10.1117/12.3008011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a MEMS mirror-based dual interference Fourier transform spectrometer (FTS) with a laser interferometer as the position sensing mechanism, making the two interferometers coaxial is very challenging. To solve this problem, a single interference MEMS FTS based on asynchronous calibration is designed. This single interference FTS uses a dichroic mirror to couple a laser beam and a broadband light beam into the same interferometer. Since the two optical beams share the same optical path, they will experience the same change when the position of any optical component along the optical path is adjusted. In data acquisition, the two interference signals are acquired asynchronously by the same InGaAs photodetector. This asynchronous calibration can effectively eliminate the laser coupling issue. According to the experimental results, compared with the dual interference spectrometer, the proposed spectrometer based on asynchronous calibration can improve the spectral repeatability and make the system simpler and lower power consumption.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"228 2\",\"pages\":\"129620G - 129620G-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A miniature Fourier transform spectrometer based on an electrothermal MEMS mirror with asynchronous calibration
In a MEMS mirror-based dual interference Fourier transform spectrometer (FTS) with a laser interferometer as the position sensing mechanism, making the two interferometers coaxial is very challenging. To solve this problem, a single interference MEMS FTS based on asynchronous calibration is designed. This single interference FTS uses a dichroic mirror to couple a laser beam and a broadband light beam into the same interferometer. Since the two optical beams share the same optical path, they will experience the same change when the position of any optical component along the optical path is adjusted. In data acquisition, the two interference signals are acquired asynchronously by the same InGaAs photodetector. This asynchronous calibration can effectively eliminate the laser coupling issue. According to the experimental results, compared with the dual interference spectrometer, the proposed spectrometer based on asynchronous calibration can improve the spectral repeatability and make the system simpler and lower power consumption.