运营管理中的区块链应用:14 年研究的系统文献综述

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-12-16 DOI:10.1007/s40745-023-00505-0
Mansoureh Beheshti Nejad, Seyed Mahmoud Zanjirchi, Seyed Mojtaba Hosseini Bamakan, Negar Jalilian
{"title":"运营管理中的区块链应用:14 年研究的系统文献综述","authors":"Mansoureh Beheshti Nejad,&nbsp;Seyed Mahmoud Zanjirchi,&nbsp;Seyed Mojtaba Hosseini Bamakan,&nbsp;Negar Jalilian","doi":"10.1007/s40745-023-00505-0","DOIUrl":null,"url":null,"abstract":"<div><p>Blockchain technology has ushered in significant technological disruptions within the operational management sphere, fostering value creation within operational management networks. In recent years, researchers have increasingly explored the potential applications of blockchain across diverse facets of operational management. Recognizing the pivotal role of comprehending prior research endeavors within any scientific domain for the development of a robust theoretical framework and a nuanced understanding of research progression in both the scientific realm and its practical applications, this study aims to identify areas where blockchain can be effectively employed. This objective is accomplished through an exhaustive systematic review of existing research on blockchain applications in the field of operations management. In pursuit of this goal, a comprehensive dataset comprising 9188 papers published up to the year 2020 is amassed and subjected to analysis employing life cycle analysis, bibliometrics, and textual analysis. The outcomes of this research elucidate the emergence of five distinctive clusters within the landscape of blockchain applications in operational management: Decentralized Finance, Traceability, Trust, Sustainability, and Information Sharing. These findings underscore the dynamic and evolving nature of blockchain’s impact in this domain.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research\",\"authors\":\"Mansoureh Beheshti Nejad,&nbsp;Seyed Mahmoud Zanjirchi,&nbsp;Seyed Mojtaba Hosseini Bamakan,&nbsp;Negar Jalilian\",\"doi\":\"10.1007/s40745-023-00505-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Blockchain technology has ushered in significant technological disruptions within the operational management sphere, fostering value creation within operational management networks. In recent years, researchers have increasingly explored the potential applications of blockchain across diverse facets of operational management. Recognizing the pivotal role of comprehending prior research endeavors within any scientific domain for the development of a robust theoretical framework and a nuanced understanding of research progression in both the scientific realm and its practical applications, this study aims to identify areas where blockchain can be effectively employed. This objective is accomplished through an exhaustive systematic review of existing research on blockchain applications in the field of operations management. In pursuit of this goal, a comprehensive dataset comprising 9188 papers published up to the year 2020 is amassed and subjected to analysis employing life cycle analysis, bibliometrics, and textual analysis. The outcomes of this research elucidate the emergence of five distinctive clusters within the landscape of blockchain applications in operational management: Decentralized Finance, Traceability, Trust, Sustainability, and Information Sharing. These findings underscore the dynamic and evolving nature of blockchain’s impact in this domain.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00505-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00505-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

区块链技术为运营管理领域带来了重大技术变革,促进了运营管理网络的价值创造。近年来,研究人员越来越多地探索区块链在运营管理各方面的潜在应用。本研究认识到,在任何科学领域中,理解先前的研究工作对于建立健全的理论框架和细致入微地了解科学领域及其实际应用中的研究进展具有关键作用,因此本研究旨在确定可以有效应用区块链的领域。为实现这一目标,我们对运营管理领域区块链应用的现有研究进行了详尽的系统回顾。为实现这一目标,本研究收集了截至 2020 年发表的 9188 篇论文组成的综合数据集,并采用生命周期分析、文献计量学和文本分析等方法对其进行了分析。这项研究的成果阐明了区块链在运营管理领域应用的五个独特集群:去中心化金融、可追溯性、信任、可持续性和信息共享。这些发现强调了区块链对该领域影响的动态性和演变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research

Blockchain technology has ushered in significant technological disruptions within the operational management sphere, fostering value creation within operational management networks. In recent years, researchers have increasingly explored the potential applications of blockchain across diverse facets of operational management. Recognizing the pivotal role of comprehending prior research endeavors within any scientific domain for the development of a robust theoretical framework and a nuanced understanding of research progression in both the scientific realm and its practical applications, this study aims to identify areas where blockchain can be effectively employed. This objective is accomplished through an exhaustive systematic review of existing research on blockchain applications in the field of operations management. In pursuit of this goal, a comprehensive dataset comprising 9188 papers published up to the year 2020 is amassed and subjected to analysis employing life cycle analysis, bibliometrics, and textual analysis. The outcomes of this research elucidate the emergence of five distinctive clusters within the landscape of blockchain applications in operational management: Decentralized Finance, Traceability, Trust, Sustainability, and Information Sharing. These findings underscore the dynamic and evolving nature of blockchain’s impact in this domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1