考虑地区气候差异的热源塔热泵适用性综合评估方法

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Computational Methods in Sciences and Engineering Pub Date : 2023-12-15 DOI:10.3233/jcm-226957
Hongyin Chen, Songcen Wang, Ming Zhong, Lu Jin, Xiaoqiang Jia, Yi Guo, Xinhe Zhang, Wei Huang
{"title":"考虑地区气候差异的热源塔热泵适用性综合评估方法","authors":"Hongyin Chen, Songcen Wang, Ming Zhong, Lu Jin, Xiaoqiang Jia, Yi Guo, Xinhe Zhang, Wei Huang","doi":"10.3233/jcm-226957","DOIUrl":null,"url":null,"abstract":"The heat source tower heat pump system is widely used in large and medium-sized air conditioning systems due to its good energy-saving advantages. However, there is no relatively reasonable evaluation system for the applicability of heat source tower heat pumps due to significant regional climate differences. Therefore, in order to better comprehensively evaluate the applicability of the heat source tower heat pump system, a comprehensive evaluation index system for the applicability of the heat source tower heat pump system was first constructed. On the basis of this evaluation index, an applicability evaluation model based on backpropagation neural network is constructed. In response to the slow convergence speed and susceptibility to local values in the application process of this evaluation model, particle swarm optimization algorithm is used to improve it. A comprehensive evaluation model for the applicability of heat source tower heat pumps based on improved backpropagation neural networks has been constructed. For the evaluation model constructed in the study, experimental data from four different regions were selected for validation. The experimental results show that in the training set, the F-Measure value of the evaluation model reaches 0.949, and in the test set, the F-Measure value of the model reaches 0.973. The comprehensive evaluation data from four regions indicate that the heat source tower heat pump system can achieve different heating and cooling effects in different regions. This indicates that the proposed comprehensive evaluation model for the applicability of heat source tower heat pumps based on this improved method has good evaluation results. It can conduct a good analysis of the applicability of the heat source tower heat pump system, providing effective support for developing reasonable and energy-saving refrigeration and heating methods in different regions.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"120 8","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive evaluation method of heat source tower heat pump applicability considering regional climate differences\",\"authors\":\"Hongyin Chen, Songcen Wang, Ming Zhong, Lu Jin, Xiaoqiang Jia, Yi Guo, Xinhe Zhang, Wei Huang\",\"doi\":\"10.3233/jcm-226957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat source tower heat pump system is widely used in large and medium-sized air conditioning systems due to its good energy-saving advantages. However, there is no relatively reasonable evaluation system for the applicability of heat source tower heat pumps due to significant regional climate differences. Therefore, in order to better comprehensively evaluate the applicability of the heat source tower heat pump system, a comprehensive evaluation index system for the applicability of the heat source tower heat pump system was first constructed. On the basis of this evaluation index, an applicability evaluation model based on backpropagation neural network is constructed. In response to the slow convergence speed and susceptibility to local values in the application process of this evaluation model, particle swarm optimization algorithm is used to improve it. A comprehensive evaluation model for the applicability of heat source tower heat pumps based on improved backpropagation neural networks has been constructed. For the evaluation model constructed in the study, experimental data from four different regions were selected for validation. The experimental results show that in the training set, the F-Measure value of the evaluation model reaches 0.949, and in the test set, the F-Measure value of the model reaches 0.973. The comprehensive evaluation data from four regions indicate that the heat source tower heat pump system can achieve different heating and cooling effects in different regions. This indicates that the proposed comprehensive evaluation model for the applicability of heat source tower heat pumps based on this improved method has good evaluation results. It can conduct a good analysis of the applicability of the heat source tower heat pump system, providing effective support for developing reasonable and energy-saving refrigeration and heating methods in different regions.\",\"PeriodicalId\":45004,\"journal\":{\"name\":\"Journal of Computational Methods in Sciences and Engineering\",\"volume\":\"120 8\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Methods in Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热源塔式热泵系统以其良好的节能优势被广泛应用于大中型空调系统中。然而,由于地区气候差异较大,目前还没有相对合理的热源塔热泵适用性评价体系。因此,为了更好地综合评价热源塔热泵系统的适用性,首先构建了热源塔热泵系统适用性综合评价指标体系。在此评价指标的基础上,构建了基于反向传播神经网络的适用性评价模型。针对该评价模型在应用过程中收敛速度慢、易受局部值影响等问题,采用粒子群优化算法对其进行了改进。基于改进的反向传播神经网络,构建了热源塔式热泵适用性综合评价模型。针对本研究构建的评价模型,选取了四个不同地区的实验数据进行验证。实验结果表明,在训练集中,评价模型的 F-Measure 值达到 0.949,在测试集中,模型的 F-Measure 值达到 0.973。四个地区的综合评价数据表明,热源塔式热泵系统在不同地区能达到不同的供热和制冷效果。这表明,基于该改进方法提出的热源塔热泵适用性综合评价模型具有良好的评价效果。它可以对热源塔热泵系统的适用性进行很好的分析,为不同地区开发合理节能的制冷制热方式提供有效支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive evaluation method of heat source tower heat pump applicability considering regional climate differences
The heat source tower heat pump system is widely used in large and medium-sized air conditioning systems due to its good energy-saving advantages. However, there is no relatively reasonable evaluation system for the applicability of heat source tower heat pumps due to significant regional climate differences. Therefore, in order to better comprehensively evaluate the applicability of the heat source tower heat pump system, a comprehensive evaluation index system for the applicability of the heat source tower heat pump system was first constructed. On the basis of this evaluation index, an applicability evaluation model based on backpropagation neural network is constructed. In response to the slow convergence speed and susceptibility to local values in the application process of this evaluation model, particle swarm optimization algorithm is used to improve it. A comprehensive evaluation model for the applicability of heat source tower heat pumps based on improved backpropagation neural networks has been constructed. For the evaluation model constructed in the study, experimental data from four different regions were selected for validation. The experimental results show that in the training set, the F-Measure value of the evaluation model reaches 0.949, and in the test set, the F-Measure value of the model reaches 0.973. The comprehensive evaluation data from four regions indicate that the heat source tower heat pump system can achieve different heating and cooling effects in different regions. This indicates that the proposed comprehensive evaluation model for the applicability of heat source tower heat pumps based on this improved method has good evaluation results. It can conduct a good analysis of the applicability of the heat source tower heat pump system, providing effective support for developing reasonable and energy-saving refrigeration and heating methods in different regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
152
期刊介绍: The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.
期刊最新文献
Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources Application of Internet of Things and multimedia technology in English online teaching Research on prediction model of scaling in ASP flooding based on data mining Diversification of residents’ consumption structure based on ELES model Research on adaptive selection method of radiation sources in passive radar based on GNSS signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1