{"title":"利用纳米压痕法研究多晶石墨烯的断裂机理和力学性能:分子动力学研究","authors":"Yingsheng Wang, Yongkun Liu, Sha Ding","doi":"10.3233/jcm-226966","DOIUrl":null,"url":null,"abstract":"Randomness of grain boundaries makes it difficult to reach a broad consensus about mechanical properties of polycrystalline graphene (PG). In the present paper, based on principle of Voronoi diagram, the models of PG with different grain sizes were established, and the fracture mechanism and mechanical properties were investigated by molecular dynamics (MD). The results showed that the crack initiation point of PG always located at the multiple junction of grain boundaries, and the crack propagation and fracture mode of PG was mainly dependent on not only the relative size but also the relative location of the indenter and grain boundaries. Additionally, the effects of grain size, indentation speed, temperature and indenter diameter on the mechanical properties were studied, which showed some interesting and different phenomena from the tensile case, e.g., the grain size seems no regular effect on mechanical properties. Furthermore, the ultimate indentation force, indentation depth and fracture showed an increase trend with the increase of indenter diameter and indentation speed, while they decreased with the increase of temperature. But when it came to the elastic modulus, it showed a decreasing trend with the increase of indenter diameter and indentation speed, while it first increased and then decreased with the increase of temperature.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"125 15","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on fracture mechanism and mechanical properties of polycrystalline graphene by nanoindentation: A molecular dynamics study\",\"authors\":\"Yingsheng Wang, Yongkun Liu, Sha Ding\",\"doi\":\"10.3233/jcm-226966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomness of grain boundaries makes it difficult to reach a broad consensus about mechanical properties of polycrystalline graphene (PG). In the present paper, based on principle of Voronoi diagram, the models of PG with different grain sizes were established, and the fracture mechanism and mechanical properties were investigated by molecular dynamics (MD). The results showed that the crack initiation point of PG always located at the multiple junction of grain boundaries, and the crack propagation and fracture mode of PG was mainly dependent on not only the relative size but also the relative location of the indenter and grain boundaries. Additionally, the effects of grain size, indentation speed, temperature and indenter diameter on the mechanical properties were studied, which showed some interesting and different phenomena from the tensile case, e.g., the grain size seems no regular effect on mechanical properties. Furthermore, the ultimate indentation force, indentation depth and fracture showed an increase trend with the increase of indenter diameter and indentation speed, while they decreased with the increase of temperature. But when it came to the elastic modulus, it showed a decreasing trend with the increase of indenter diameter and indentation speed, while it first increased and then decreased with the increase of temperature.\",\"PeriodicalId\":45004,\"journal\":{\"name\":\"Journal of Computational Methods in Sciences and Engineering\",\"volume\":\"125 15\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Methods in Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on fracture mechanism and mechanical properties of polycrystalline graphene by nanoindentation: A molecular dynamics study
Randomness of grain boundaries makes it difficult to reach a broad consensus about mechanical properties of polycrystalline graphene (PG). In the present paper, based on principle of Voronoi diagram, the models of PG with different grain sizes were established, and the fracture mechanism and mechanical properties were investigated by molecular dynamics (MD). The results showed that the crack initiation point of PG always located at the multiple junction of grain boundaries, and the crack propagation and fracture mode of PG was mainly dependent on not only the relative size but also the relative location of the indenter and grain boundaries. Additionally, the effects of grain size, indentation speed, temperature and indenter diameter on the mechanical properties were studied, which showed some interesting and different phenomena from the tensile case, e.g., the grain size seems no regular effect on mechanical properties. Furthermore, the ultimate indentation force, indentation depth and fracture showed an increase trend with the increase of indenter diameter and indentation speed, while they decreased with the increase of temperature. But when it came to the elastic modulus, it showed a decreasing trend with the increase of indenter diameter and indentation speed, while it first increased and then decreased with the increase of temperature.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.