Silvia Buratti, Davide Deiana, A. Noccaro, Mattia Pinardi, G. di Pino, Domenico Formica, N. Jarrassé
{"title":"振动触觉反馈对超编机械臂交互力控制的影响","authors":"Silvia Buratti, Davide Deiana, A. Noccaro, Mattia Pinardi, G. di Pino, Domenico Formica, N. Jarrassé","doi":"10.3390/machines11121085","DOIUrl":null,"url":null,"abstract":"Supernumerary robotic limbs are mainly designed to augment the physical capabilities of able-bodied individuals, in a wide range of contexts from body support to surgery. When they are worn as wearable devices, they naturally provide inherent feedback due to the mechanical coupling with the human body. The user can, thus, perceive the interaction with the environment by relying on a combination of visual and inherent feedback. However, these can be inefficient in accomplishing complex tasks, particularly in the case of visual occlusion or variation in the environment stiffness. Here, we investigated whether, in a force-regulation task using a wearable supernumerary robotic arm (SRA), additional vibrotactile feedback can increase the control performance of participants compared to the inherent feedback. Additionally, to make the scenario more realistic, we introduced variations in the SRA’s kinematic posture and in the environment stiffness. Notably, our findings revealed a statistically significant improvement in user performance over all the evaluated metrics while receiving additional vibrotactile feedback. Compared to inherent feedback alone, the additional vibrotactile feedback allowed participants to exert the required force faster (p < 0.01), to maintain it for longer (p < 0.001), and with lower errors (p < 0.001). No discernible effects related to the SRA’s posture or environment stiffness were observed. These results proved the benefits of providing the user with additional vibrotactile feedback to convey the SRA’s force during interaction tasks.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"120 13","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Vibrotactile Feedback on the Control of the Interaction Force of a Supernumerary Robotic Arm\",\"authors\":\"Silvia Buratti, Davide Deiana, A. Noccaro, Mattia Pinardi, G. di Pino, Domenico Formica, N. Jarrassé\",\"doi\":\"10.3390/machines11121085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supernumerary robotic limbs are mainly designed to augment the physical capabilities of able-bodied individuals, in a wide range of contexts from body support to surgery. When they are worn as wearable devices, they naturally provide inherent feedback due to the mechanical coupling with the human body. The user can, thus, perceive the interaction with the environment by relying on a combination of visual and inherent feedback. However, these can be inefficient in accomplishing complex tasks, particularly in the case of visual occlusion or variation in the environment stiffness. Here, we investigated whether, in a force-regulation task using a wearable supernumerary robotic arm (SRA), additional vibrotactile feedback can increase the control performance of participants compared to the inherent feedback. Additionally, to make the scenario more realistic, we introduced variations in the SRA’s kinematic posture and in the environment stiffness. Notably, our findings revealed a statistically significant improvement in user performance over all the evaluated metrics while receiving additional vibrotactile feedback. Compared to inherent feedback alone, the additional vibrotactile feedback allowed participants to exert the required force faster (p < 0.01), to maintain it for longer (p < 0.001), and with lower errors (p < 0.001). No discernible effects related to the SRA’s posture or environment stiffness were observed. These results proved the benefits of providing the user with additional vibrotactile feedback to convey the SRA’s force during interaction tasks.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"120 13\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121085\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121085","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Vibrotactile Feedback on the Control of the Interaction Force of a Supernumerary Robotic Arm
Supernumerary robotic limbs are mainly designed to augment the physical capabilities of able-bodied individuals, in a wide range of contexts from body support to surgery. When they are worn as wearable devices, they naturally provide inherent feedback due to the mechanical coupling with the human body. The user can, thus, perceive the interaction with the environment by relying on a combination of visual and inherent feedback. However, these can be inefficient in accomplishing complex tasks, particularly in the case of visual occlusion or variation in the environment stiffness. Here, we investigated whether, in a force-regulation task using a wearable supernumerary robotic arm (SRA), additional vibrotactile feedback can increase the control performance of participants compared to the inherent feedback. Additionally, to make the scenario more realistic, we introduced variations in the SRA’s kinematic posture and in the environment stiffness. Notably, our findings revealed a statistically significant improvement in user performance over all the evaluated metrics while receiving additional vibrotactile feedback. Compared to inherent feedback alone, the additional vibrotactile feedback allowed participants to exert the required force faster (p < 0.01), to maintain it for longer (p < 0.001), and with lower errors (p < 0.001). No discernible effects related to the SRA’s posture or environment stiffness were observed. These results proved the benefits of providing the user with additional vibrotactile feedback to convey the SRA’s force during interaction tasks.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.