基于回归和人工神经网络方法探索的树木生物量建模

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-12-13 DOI:10.3390/f14122429
Şerife Kalkanlı Genç, M. Diamantopoulou, Ramazan Özçelik
{"title":"基于回归和人工神经网络方法探索的树木生物量建模","authors":"Şerife Kalkanlı Genç, M. Diamantopoulou, Ramazan Özçelik","doi":"10.3390/f14122429","DOIUrl":null,"url":null,"abstract":"Understanding the dynamics of tree biomass is a significant factor in forest ecosystems, and accurate quantitative knowledge of its development provides support for the optimization of forest management. This work aimed to employ innovative practices in tree biomass modeling, artificial neural network approaches along with the least-squares regression methodology, in order to construct reliable and accurate estimation and prediction models that contribute to solving the emerging problems in the field of sustainable forest management. Based on this aim, different modeling strategies were developed and explored. The nonlinear seemingly unrelated regression (NSUR) methodology, the generalized regression (GRNN), the resilient propagation (RPNN) and the Bayesian regularization (BRNN) artificial neural network algorithms were utilized for the construction of reliable biomass models to attain the most accurate and reliable tree biomass components and total tree biomass estimations. The work showed that GRNN models provided a significantly better performance compared with the other modeling methodologies tested. Considering the non-parametric nature of the GRNN neural network algorithm, the fact that it was designed for nonlinear regression-type problems capable of dealing with small datasets, this modeling approach warrants consideration as an effective alternative to nonlinear regression or to other neural network approaches to the field of tree biomass modeling.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"61 11","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches\",\"authors\":\"Şerife Kalkanlı Genç, M. Diamantopoulou, Ramazan Özçelik\",\"doi\":\"10.3390/f14122429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the dynamics of tree biomass is a significant factor in forest ecosystems, and accurate quantitative knowledge of its development provides support for the optimization of forest management. This work aimed to employ innovative practices in tree biomass modeling, artificial neural network approaches along with the least-squares regression methodology, in order to construct reliable and accurate estimation and prediction models that contribute to solving the emerging problems in the field of sustainable forest management. Based on this aim, different modeling strategies were developed and explored. The nonlinear seemingly unrelated regression (NSUR) methodology, the generalized regression (GRNN), the resilient propagation (RPNN) and the Bayesian regularization (BRNN) artificial neural network algorithms were utilized for the construction of reliable biomass models to attain the most accurate and reliable tree biomass components and total tree biomass estimations. The work showed that GRNN models provided a significantly better performance compared with the other modeling methodologies tested. Considering the non-parametric nature of the GRNN neural network algorithm, the fact that it was designed for nonlinear regression-type problems capable of dealing with small datasets, this modeling approach warrants consideration as an effective alternative to nonlinear regression or to other neural network approaches to the field of tree biomass modeling.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"61 11\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14122429\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122429","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

了解树木生物量的动态是森林生态系统中的一个重要因素,对其发展情况的准确定量了解为优化森林管理提供了支持。这项工作旨在利用树木生物量建模的创新实践、人工神经网络方法和最小二乘回归方法,构建可靠、准确的估算和预测模型,为解决可持续森林管理领域的新问题做出贡献。基于这一目标,我们开发并探索了不同的建模策略。利用非线性似非相关回归(NSUR)方法、广义回归(GRNN)、弹性传播(RPNN)和贝叶斯正则化(BRNN)人工神经网络算法构建可靠的生物量模型,以获得最准确可靠的树木生物量成分和树木总生物量估算结果。研究结果表明,与所测试的其他建模方法相比,GRNN 模型的性能明显更好。考虑到 GRNN 神经网络算法的非参数性质,以及它是为非线性回归类型问题而设计的,能够处理小数据集这一事实,这种建模方法值得考虑作为非线性回归或其他神经网络方法的有效替代方法,用于树木生物量建模领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree Biomass Modeling Based on the Exploration of Regression and Artificial Neural Networks Approaches
Understanding the dynamics of tree biomass is a significant factor in forest ecosystems, and accurate quantitative knowledge of its development provides support for the optimization of forest management. This work aimed to employ innovative practices in tree biomass modeling, artificial neural network approaches along with the least-squares regression methodology, in order to construct reliable and accurate estimation and prediction models that contribute to solving the emerging problems in the field of sustainable forest management. Based on this aim, different modeling strategies were developed and explored. The nonlinear seemingly unrelated regression (NSUR) methodology, the generalized regression (GRNN), the resilient propagation (RPNN) and the Bayesian regularization (BRNN) artificial neural network algorithms were utilized for the construction of reliable biomass models to attain the most accurate and reliable tree biomass components and total tree biomass estimations. The work showed that GRNN models provided a significantly better performance compared with the other modeling methodologies tested. Considering the non-parametric nature of the GRNN neural network algorithm, the fact that it was designed for nonlinear regression-type problems capable of dealing with small datasets, this modeling approach warrants consideration as an effective alternative to nonlinear regression or to other neural network approaches to the field of tree biomass modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1