树冠对生物量分配的影响及其对现场条件和林奈种植园密度的响应

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-12-13 DOI:10.3390/f14122433
Lulu He, Xuan Zhang, Xiaoxia Wang, Haseen Ullah, Yadong Liu, Jie Duan
{"title":"树冠对生物量分配的影响及其对现场条件和林奈种植园密度的响应","authors":"Lulu He, Xuan Zhang, Xiaoxia Wang, Haseen Ullah, Yadong Liu, Jie Duan","doi":"10.3390/f14122433","DOIUrl":null,"url":null,"abstract":"Tree crown plays a crucial role in the process of photosynthesis and the formation of biomass. The site conditions and stand density have a significant impact on tree and crown growth, as well as biomass formation. Understanding crown growth and its influence on the allometric growth of the biomass of various organs under diverse site conditions and densities is critical to comprehending forest adaptation to climate change and management. This study examined the growth of trees, crown, and biomass in 36 plots of young Platycladus orientalis plantations across three site conditions (S1: thin soil on the sunny slope; S2: thick soil on the sunny slope; S3: thin soil on the shady slope) and four densities (D1: ≤1500 plants/hm2; D2: 1501–2000 plants/hm2; D3: 2001–3000 plants/hm2; and D4: ≥3001 plants/hm2). The findings of this study showed that S3 demonstrated the best tree growth, with considerably higher DBH and V than S1 and S2. In addition, as the number of trees grew, the average diameter at breast height (DBH), height (H), and volume (V) all decreased greatly. Poor site (S1) suppressed the canopy, decreasing crown width (CW), crown length (CL), crown ratio (CR), crown surface area (CCSA), and crown volume (CCV), while increasing crown efficiency (CEFF). This same trend was seen in D4, where CR, CCSA, and CCV were all much smaller than the other densities, but CEFF was the highest. Subjective and objective indicators were less responsive to changes in crown growth than crown composite indicators like CCSA, CCV, CEFF, and CR. Site condition and density had a major impact on biomass accumulation, with S1 and D4 having a much lower biomass than S2, S3, D1, D2, and D3. More biomass was allocated to the stem in S3 and D1, and more biomass was allocated to branches and leaves in S2, S3, D1, D2, and D3, resulting in a nearly isotropic growth of branches and leaves. The effect of crown indicators on the biomass of each organ varied according to site condition and density. In varied site conditions, crown and DBH ratio (RCD) contributed the most to stem biomass, whereas CL contributed the most to branch and root biomass. CL had the largest effect on biomass accumulation at various densities. This study demonstrates how site condition and density affect tree and crown development and biomass accumulation, providing theoretical guidance for plantation management under climate change.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"27 29","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree Crown Affects Biomass Allocation and Its Response to Site Conditions and the Density of Platycladus orientalis Linnaeus Plantation\",\"authors\":\"Lulu He, Xuan Zhang, Xiaoxia Wang, Haseen Ullah, Yadong Liu, Jie Duan\",\"doi\":\"10.3390/f14122433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tree crown plays a crucial role in the process of photosynthesis and the formation of biomass. The site conditions and stand density have a significant impact on tree and crown growth, as well as biomass formation. Understanding crown growth and its influence on the allometric growth of the biomass of various organs under diverse site conditions and densities is critical to comprehending forest adaptation to climate change and management. This study examined the growth of trees, crown, and biomass in 36 plots of young Platycladus orientalis plantations across three site conditions (S1: thin soil on the sunny slope; S2: thick soil on the sunny slope; S3: thin soil on the shady slope) and four densities (D1: ≤1500 plants/hm2; D2: 1501–2000 plants/hm2; D3: 2001–3000 plants/hm2; and D4: ≥3001 plants/hm2). The findings of this study showed that S3 demonstrated the best tree growth, with considerably higher DBH and V than S1 and S2. In addition, as the number of trees grew, the average diameter at breast height (DBH), height (H), and volume (V) all decreased greatly. Poor site (S1) suppressed the canopy, decreasing crown width (CW), crown length (CL), crown ratio (CR), crown surface area (CCSA), and crown volume (CCV), while increasing crown efficiency (CEFF). This same trend was seen in D4, where CR, CCSA, and CCV were all much smaller than the other densities, but CEFF was the highest. Subjective and objective indicators were less responsive to changes in crown growth than crown composite indicators like CCSA, CCV, CEFF, and CR. Site condition and density had a major impact on biomass accumulation, with S1 and D4 having a much lower biomass than S2, S3, D1, D2, and D3. More biomass was allocated to the stem in S3 and D1, and more biomass was allocated to branches and leaves in S2, S3, D1, D2, and D3, resulting in a nearly isotropic growth of branches and leaves. The effect of crown indicators on the biomass of each organ varied according to site condition and density. In varied site conditions, crown and DBH ratio (RCD) contributed the most to stem biomass, whereas CL contributed the most to branch and root biomass. CL had the largest effect on biomass accumulation at various densities. This study demonstrates how site condition and density affect tree and crown development and biomass accumulation, providing theoretical guidance for plantation management under climate change.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"27 29\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14122433\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122433","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

树冠在光合作用和生物量形成过程中起着至关重要的作用。地点条件和林分密度对树木和树冠的生长以及生物量的形成有重大影响。了解树冠生长及其对不同立地条件和密度下各器官生物量异速增长的影响,对于理解森林对气候变化的适应性和管理至关重要。本研究考察了36块东方桔幼树人工林在三种立地条件(S1:阳坡薄土;S2:阳坡厚土;S3:阴坡薄土)和四种密度(D1:≤1500株/hm2;D2:1501-2000株/hm2;D3:2001-3000株/hm2;D4:≥3001株/hm2)下的树木、树冠和生物量的生长情况。研究结果表明,S3 的树木长势最好,DBH 和 V 值明显高于 S1 和 S2。此外,随着树木数量的增加,平均胸径(DBH)、高度(H)和体积(V)都大幅下降。较差的地点(S1)抑制了树冠,减少了冠宽(CW)、冠长(CL)、冠比(CR)、冠表面积(CCSA)和冠体积(CCV),同时增加了冠效率(CEFF)。在 D4 中也出现了同样的趋势,CR、CCSA 和 CCV 都比其他密度小得多,但 CEFF 却最高。与树冠综合指标(如 CCSA、CCV、CEFF 和 CR)相比,主观和客观指标对树冠生长变化的反应较小。场地条件和密度对生物量积累有很大影响,S1 和 D4 的生物量远低于 S2、S3、D1、D2 和 D3。在 S3 和 D1 中,更多的生物量分配到了茎干上,而在 S2、S3、D1、D2 和 D3 中,更多的生物量分配到了枝叶上,导致枝叶几乎呈各向同性生长。树冠指标对各器官生物量的影响因地点条件和密度而异。在不同的地点条件下,树冠和 DBH 比率(RCD)对茎的生物量贡献最大,而 CL 对枝条和根的生物量贡献最大。在不同密度下,CL对生物量积累的影响最大。这项研究证明了地点条件和密度如何影响树木和树冠的生长发育以及生物量的积累,为气候变化下的种植园管理提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree Crown Affects Biomass Allocation and Its Response to Site Conditions and the Density of Platycladus orientalis Linnaeus Plantation
Tree crown plays a crucial role in the process of photosynthesis and the formation of biomass. The site conditions and stand density have a significant impact on tree and crown growth, as well as biomass formation. Understanding crown growth and its influence on the allometric growth of the biomass of various organs under diverse site conditions and densities is critical to comprehending forest adaptation to climate change and management. This study examined the growth of trees, crown, and biomass in 36 plots of young Platycladus orientalis plantations across three site conditions (S1: thin soil on the sunny slope; S2: thick soil on the sunny slope; S3: thin soil on the shady slope) and four densities (D1: ≤1500 plants/hm2; D2: 1501–2000 plants/hm2; D3: 2001–3000 plants/hm2; and D4: ≥3001 plants/hm2). The findings of this study showed that S3 demonstrated the best tree growth, with considerably higher DBH and V than S1 and S2. In addition, as the number of trees grew, the average diameter at breast height (DBH), height (H), and volume (V) all decreased greatly. Poor site (S1) suppressed the canopy, decreasing crown width (CW), crown length (CL), crown ratio (CR), crown surface area (CCSA), and crown volume (CCV), while increasing crown efficiency (CEFF). This same trend was seen in D4, where CR, CCSA, and CCV were all much smaller than the other densities, but CEFF was the highest. Subjective and objective indicators were less responsive to changes in crown growth than crown composite indicators like CCSA, CCV, CEFF, and CR. Site condition and density had a major impact on biomass accumulation, with S1 and D4 having a much lower biomass than S2, S3, D1, D2, and D3. More biomass was allocated to the stem in S3 and D1, and more biomass was allocated to branches and leaves in S2, S3, D1, D2, and D3, resulting in a nearly isotropic growth of branches and leaves. The effect of crown indicators on the biomass of each organ varied according to site condition and density. In varied site conditions, crown and DBH ratio (RCD) contributed the most to stem biomass, whereas CL contributed the most to branch and root biomass. CL had the largest effect on biomass accumulation at various densities. This study demonstrates how site condition and density affect tree and crown development and biomass accumulation, providing theoretical guidance for plantation management under climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1