{"title":"用透射电子显微镜研究钽/钽镍纳米层系统的结构","authors":"B. Sobel, K. Lukaszkowicz, M. Pawlyta","doi":"10.4028/p-rX2K0B","DOIUrl":null,"url":null,"abstract":"One of the most important challenges of modern materials engineering is to improve the efficiency and durability of materials, which directly translates into reducing the consumption of raw materials. In many applications, these goals are achieved by strengthening and functionalizing the surface, especially in the case of nanocoatings. The material for the study is the Ta/TaN multilayer systems obtained with the ALD technique (Atomic Layer Deposition, R200 by Picosun). For their structure characterisation electron microscopy (HR STEM, electron diffraction, EDS, EELS) was used. Geometrical parameters (thickness of the constituent Ta and TaN layers, ratio of thicknesses of metallic and ceramic layers) were determined, and their chemical and phase compositions were verified. The obtained results will be used to model mechanical properties and interpret the results of experimental nanoindentation measurements.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"32 12","pages":"219 - 226"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of Ta/TaN Nanolayered Systems Investigated by Transmission Electron Microscopy\",\"authors\":\"B. Sobel, K. Lukaszkowicz, M. Pawlyta\",\"doi\":\"10.4028/p-rX2K0B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important challenges of modern materials engineering is to improve the efficiency and durability of materials, which directly translates into reducing the consumption of raw materials. In many applications, these goals are achieved by strengthening and functionalizing the surface, especially in the case of nanocoatings. The material for the study is the Ta/TaN multilayer systems obtained with the ALD technique (Atomic Layer Deposition, R200 by Picosun). For their structure characterisation electron microscopy (HR STEM, electron diffraction, EDS, EELS) was used. Geometrical parameters (thickness of the constituent Ta and TaN layers, ratio of thicknesses of metallic and ceramic layers) were determined, and their chemical and phase compositions were verified. The obtained results will be used to model mechanical properties and interpret the results of experimental nanoindentation measurements.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"32 12\",\"pages\":\"219 - 226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-rX2K0B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-rX2K0B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Structure of Ta/TaN Nanolayered Systems Investigated by Transmission Electron Microscopy
One of the most important challenges of modern materials engineering is to improve the efficiency and durability of materials, which directly translates into reducing the consumption of raw materials. In many applications, these goals are achieved by strengthening and functionalizing the surface, especially in the case of nanocoatings. The material for the study is the Ta/TaN multilayer systems obtained with the ALD technique (Atomic Layer Deposition, R200 by Picosun). For their structure characterisation electron microscopy (HR STEM, electron diffraction, EDS, EELS) was used. Geometrical parameters (thickness of the constituent Ta and TaN layers, ratio of thicknesses of metallic and ceramic layers) were determined, and their chemical and phase compositions were verified. The obtained results will be used to model mechanical properties and interpret the results of experimental nanoindentation measurements.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.