Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, J. Franke, Haynes Stephens, Shuo Chen
{"title":"GGCMI 第二阶段统计模拟器:作物产量年际变化对二氧化碳、温度、水和氮扰动的响应","authors":"Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, J. Franke, Haynes Stephens, Shuo Chen","doi":"10.5194/gmd-16-7203-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Understanding the impact of climate change on year-to-year variation of crop yield is critical to global food stability and security. While crop model emulators are believed to be lightweight tools to replace the models, few emulators have been developed to capture such interannual variation of crop yield in response to climate variability. In this study, we developed a statistical emulator with a machine learning algorithm to reproduce the response of year-to-year variation of four crop yields to CO2 (C), temperature (T), water (W), and nitrogen (N) perturbations defined in the Global Gridded Crop Model Intercomparison Project (GGCMI) phase 2. The emulators were able to explain more than 52 % of the variance of simulated yield and performed well in capturing the year-to-year variation of global average and gridded crop yield over current croplands in the baseline. With the changes in CO2–temperature–water–nitrogen (CTWN) perturbations, the emulators could reproduce the year-to-year variation of crop yield well over most current cropland. The variation of R and the mean absolute error was small under the single CTWN perturbations and dual-factor perturbations. These emulators thus provide statistical response surfaces of yield, including both its mean and interannual variability, to climate factors. They could facilitate spatiotemporal downscaling of crop model simulation, projecting the changes in crop yield variability in the future and serving as a lightweight tool for multi-model ensemble simulation. The emulators enhanced the flexibility of crop yield estimates and expanded the application of large-ensemble simulations of crop yield under climate change.\n","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"2 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations\",\"authors\":\"Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, J. Franke, Haynes Stephens, Shuo Chen\",\"doi\":\"10.5194/gmd-16-7203-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Understanding the impact of climate change on year-to-year variation of crop yield is critical to global food stability and security. While crop model emulators are believed to be lightweight tools to replace the models, few emulators have been developed to capture such interannual variation of crop yield in response to climate variability. In this study, we developed a statistical emulator with a machine learning algorithm to reproduce the response of year-to-year variation of four crop yields to CO2 (C), temperature (T), water (W), and nitrogen (N) perturbations defined in the Global Gridded Crop Model Intercomparison Project (GGCMI) phase 2. The emulators were able to explain more than 52 % of the variance of simulated yield and performed well in capturing the year-to-year variation of global average and gridded crop yield over current croplands in the baseline. With the changes in CO2–temperature–water–nitrogen (CTWN) perturbations, the emulators could reproduce the year-to-year variation of crop yield well over most current cropland. The variation of R and the mean absolute error was small under the single CTWN perturbations and dual-factor perturbations. These emulators thus provide statistical response surfaces of yield, including both its mean and interannual variability, to climate factors. They could facilitate spatiotemporal downscaling of crop model simulation, projecting the changes in crop yield variability in the future and serving as a lightweight tool for multi-model ensemble simulation. The emulators enhanced the flexibility of crop yield estimates and expanded the application of large-ensemble simulations of crop yield under climate change.\\n\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":\"2 10\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-16-7203-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-16-7203-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
Abstract. Understanding the impact of climate change on year-to-year variation of crop yield is critical to global food stability and security. While crop model emulators are believed to be lightweight tools to replace the models, few emulators have been developed to capture such interannual variation of crop yield in response to climate variability. In this study, we developed a statistical emulator with a machine learning algorithm to reproduce the response of year-to-year variation of four crop yields to CO2 (C), temperature (T), water (W), and nitrogen (N) perturbations defined in the Global Gridded Crop Model Intercomparison Project (GGCMI) phase 2. The emulators were able to explain more than 52 % of the variance of simulated yield and performed well in capturing the year-to-year variation of global average and gridded crop yield over current croplands in the baseline. With the changes in CO2–temperature–water–nitrogen (CTWN) perturbations, the emulators could reproduce the year-to-year variation of crop yield well over most current cropland. The variation of R and the mean absolute error was small under the single CTWN perturbations and dual-factor perturbations. These emulators thus provide statistical response surfaces of yield, including both its mean and interannual variability, to climate factors. They could facilitate spatiotemporal downscaling of crop model simulation, projecting the changes in crop yield variability in the future and serving as a lightweight tool for multi-model ensemble simulation. The emulators enhanced the flexibility of crop yield estimates and expanded the application of large-ensemble simulations of crop yield under climate change.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.