氧化锡修饰氧化铟气敏层以提高气体传感器的效率

IF 0.2 Q4 INSTRUMENTS & INSTRUMENTATION Devices and Methods of Measurements Pub Date : 2023-12-12 DOI:10.21122/2220-9506-2023-14-4-284-295
O. Reutskaya, S. V. Denisuk, A. M. Kudanovich, N. I. Mukhurov, I. A. Taratyn, V. G. Luhin
{"title":"氧化锡修饰氧化铟气敏层以提高气体传感器的效率","authors":"O. Reutskaya, S. V. Denisuk, A. M. Kudanovich, N. I. Mukhurov, I. A. Taratyn, V. G. Luhin","doi":"10.21122/2220-9506-2023-14-4-284-295","DOIUrl":null,"url":null,"abstract":"Monitoring of air pollutions is one of actual trends in the development of industrial and domestic instrumentation. There are sets of tasks for improving gas analytical instruments because of increasing demand for control of a concentration of explosive and toxic gases on a level with maximum allowable concentration. The aim of the paper was to investigate the methods of formation and elemental composition of indium oxide films modified with tin oxide on the surface of gas sensor elements as one of the promising compounds for improving the detection efficiency of explosive and toxic gases in the environment. The processes of formation of gas-sensitive films deposited on the surface of nichrome alloy information electrodes were studied in this article. Substrates of anodic aluminum oxide with area of 10 × 10 mm2 and a thickness of 45 ± 0,5 μm were chosen for research. Two layers on the surface of the samples were formed. The first layer was formed from NiCr alloy (Ni – 80 %, Cr – 20 %) with a thickness of ≈ 0.3 μm by ion-plasma sputtering. The second layer was based on indium oxide with addition of tin oxide with thicknesses from ≈ 0.3 μm to ≈ 1.0 µm and coated with sol-gel technology. Five samples of gas-sensitive films were formed with different methods of deposition and heat treatment. Scanning electron microscopy was used for study of films’ morphology and elemental compositions of samples. The most perfect continuous semiconductor films were obtained by multilayer applying of a sol-gel paste. When semiconductor films were processed at annealing temperatures of 700 °C and higher in vacuum so there was observed cracking of semiconductor films up to a layer of NiCr alloy. The developed surface of gas-sensitive films allows to reach high sensitivity and affectivity of semiconductor sensors for control of air gas composition.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tin Oxide Modification of Indium Oxide Gas Sensitive Layers to Increase Efficiency of Gas Sensors\",\"authors\":\"O. Reutskaya, S. V. Denisuk, A. M. Kudanovich, N. I. Mukhurov, I. A. Taratyn, V. G. Luhin\",\"doi\":\"10.21122/2220-9506-2023-14-4-284-295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring of air pollutions is one of actual trends in the development of industrial and domestic instrumentation. There are sets of tasks for improving gas analytical instruments because of increasing demand for control of a concentration of explosive and toxic gases on a level with maximum allowable concentration. The aim of the paper was to investigate the methods of formation and elemental composition of indium oxide films modified with tin oxide on the surface of gas sensor elements as one of the promising compounds for improving the detection efficiency of explosive and toxic gases in the environment. The processes of formation of gas-sensitive films deposited on the surface of nichrome alloy information electrodes were studied in this article. Substrates of anodic aluminum oxide with area of 10 × 10 mm2 and a thickness of 45 ± 0,5 μm were chosen for research. Two layers on the surface of the samples were formed. The first layer was formed from NiCr alloy (Ni – 80 %, Cr – 20 %) with a thickness of ≈ 0.3 μm by ion-plasma sputtering. The second layer was based on indium oxide with addition of tin oxide with thicknesses from ≈ 0.3 μm to ≈ 1.0 µm and coated with sol-gel technology. Five samples of gas-sensitive films were formed with different methods of deposition and heat treatment. Scanning electron microscopy was used for study of films’ morphology and elemental compositions of samples. The most perfect continuous semiconductor films were obtained by multilayer applying of a sol-gel paste. When semiconductor films were processed at annealing temperatures of 700 °C and higher in vacuum so there was observed cracking of semiconductor films up to a layer of NiCr alloy. The developed surface of gas-sensitive films allows to reach high sensitivity and affectivity of semiconductor sensors for control of air gas composition.\",\"PeriodicalId\":41798,\"journal\":{\"name\":\"Devices and Methods of Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Devices and Methods of Measurements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2220-9506-2023-14-4-284-295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2023-14-4-284-295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

监测空气污染是工业和家用仪器仪表发展的实际趋势之一。由于对爆炸性气体和有毒气体浓度控制在最大允许浓度水平的要求越来越高,因此需要改进气体分析仪器。本文旨在研究在气体传感器元件表面用氧化锡修饰的氧化铟薄膜的形成方法和元素组成,这是提高环境中爆炸性气体和有毒气体检测效率的有前途的化合物之一。本文研究了沉积在镍铬合金信息电极表面的气敏薄膜的形成过程。研究选择了面积为 10 × 10 mm2、厚度为 45 ± 0.5 μm 的阳极氧化铝基片。样品表面形成了两层。第一层由镍铬合金(镍 - 80%,铬 - 20%)通过离子等离子溅射形成,厚度≈ 0.3 μm。第二层以氧化铟为基础,添加了氧化锡,厚度从 ≈ 0.3 μm 到 ≈ 1.0 µm,采用溶胶-凝胶技术镀膜。用不同的沉积和热处理方法形成了五个气敏薄膜样品。扫描电子显微镜用于研究薄膜的形态和样品的元素组成。通过多层溶胶-凝胶浆获得了最完美的连续半导体薄膜。当在真空中以 700 °C 或更高的退火温度处理半导体薄膜时,可以观察到半导体薄膜的裂纹一直延伸到镍铬合金层。开发的气敏薄膜表面可使半导体传感器达到高灵敏度和高影响性,从而控制空气中的气体成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tin Oxide Modification of Indium Oxide Gas Sensitive Layers to Increase Efficiency of Gas Sensors
Monitoring of air pollutions is one of actual trends in the development of industrial and domestic instrumentation. There are sets of tasks for improving gas analytical instruments because of increasing demand for control of a concentration of explosive and toxic gases on a level with maximum allowable concentration. The aim of the paper was to investigate the methods of formation and elemental composition of indium oxide films modified with tin oxide on the surface of gas sensor elements as one of the promising compounds for improving the detection efficiency of explosive and toxic gases in the environment. The processes of formation of gas-sensitive films deposited on the surface of nichrome alloy information electrodes were studied in this article. Substrates of anodic aluminum oxide with area of 10 × 10 mm2 and a thickness of 45 ± 0,5 μm were chosen for research. Two layers on the surface of the samples were formed. The first layer was formed from NiCr alloy (Ni – 80 %, Cr – 20 %) with a thickness of ≈ 0.3 μm by ion-plasma sputtering. The second layer was based on indium oxide with addition of tin oxide with thicknesses from ≈ 0.3 μm to ≈ 1.0 µm and coated with sol-gel technology. Five samples of gas-sensitive films were formed with different methods of deposition and heat treatment. Scanning electron microscopy was used for study of films’ morphology and elemental compositions of samples. The most perfect continuous semiconductor films were obtained by multilayer applying of a sol-gel paste. When semiconductor films were processed at annealing temperatures of 700 °C and higher in vacuum so there was observed cracking of semiconductor films up to a layer of NiCr alloy. The developed surface of gas-sensitive films allows to reach high sensitivity and affectivity of semiconductor sensors for control of air gas composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Devices and Methods of Measurements
Devices and Methods of Measurements INSTRUMENTS & INSTRUMENTATION-
自引率
25.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
Structure of Silicon Wafers Planar Surface before and after Rapid Thermal Treatment Assessment of Surface Roughness of Non-Metallic Materials during Laser Processing Bifacial Photovоltaic Sensor for Insolation Energy Resource Monitoring A Morphological Approach to Development of a Process for Measurement Uncertainty Estimation Energy-Dispersive X-Ray Microanalysis – as a Method for Study the Aluminium-Polysilicon Interface after Exposure with Long-Term and Rapid Thermal Annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1