Jie Song, Qing Lian Li, Jun Sun, Xin Lin Liu, Lan Wei Chen
{"title":"小型通道中甲烷流动沸腾过程中的两相压降研究","authors":"Jie Song, Qing Lian Li, Jun Sun, Xin Lin Liu, Lan Wei Chen","doi":"10.4028/p-3yYkrV","DOIUrl":null,"url":null,"abstract":"For LOX/LCH4 variable thrust rocket engine, the propellant methane is traditionally selected as the coolant in regenerative cooling channel (RCC). With the decrease of engine thrust, the mass flow rate of coolant methane decreases gradually. At low engine thrust, the coolant methane is usually in a subcritical state. The heat transfer deterioration of subcritical methane occurs in RCC, which may cause thrust chamber wall ablation. The two-phase pressure drop data of methane are crucial parameters for the design and optimization of RCC. But it is rarely to find such measured frictional pressure drop data of methane in open published literature. The two-phase pressure drop of methane during flow boiling in the single mini channels with the diameters of 2.0 mm are investigated systematically. Effects of the mass flux (582.19~1755.48 kg/m2·s), inlet pressure (0.56~3.55 MPa), heat flux (53.25~318.68 kW/m2) on the frictional pressure drop of methane are discussed. The results show that the frictional pressure drop of methane during flow boiling increases with mass flux and inlet pressure at the experimental conditions, and heat flux shows weak effect on the frictional pressure drop. The comparisons of the experimental data with the predicted value by existing six correlations are analyzed. Contrary to the conventional channels, homogeneous model yields better prediction than five separated flow models. Present experimental results can provide reference for the design and optimization of RCC in LOX/LCH4 rocket engine.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Two-Phase Pressure Drop of Methane during Flow Boiling in Mini Channel\",\"authors\":\"Jie Song, Qing Lian Li, Jun Sun, Xin Lin Liu, Lan Wei Chen\",\"doi\":\"10.4028/p-3yYkrV\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For LOX/LCH4 variable thrust rocket engine, the propellant methane is traditionally selected as the coolant in regenerative cooling channel (RCC). With the decrease of engine thrust, the mass flow rate of coolant methane decreases gradually. At low engine thrust, the coolant methane is usually in a subcritical state. The heat transfer deterioration of subcritical methane occurs in RCC, which may cause thrust chamber wall ablation. The two-phase pressure drop data of methane are crucial parameters for the design and optimization of RCC. But it is rarely to find such measured frictional pressure drop data of methane in open published literature. The two-phase pressure drop of methane during flow boiling in the single mini channels with the diameters of 2.0 mm are investigated systematically. Effects of the mass flux (582.19~1755.48 kg/m2·s), inlet pressure (0.56~3.55 MPa), heat flux (53.25~318.68 kW/m2) on the frictional pressure drop of methane are discussed. The results show that the frictional pressure drop of methane during flow boiling increases with mass flux and inlet pressure at the experimental conditions, and heat flux shows weak effect on the frictional pressure drop. The comparisons of the experimental data with the predicted value by existing six correlations are analyzed. Contrary to the conventional channels, homogeneous model yields better prediction than five separated flow models. Present experimental results can provide reference for the design and optimization of RCC in LOX/LCH4 rocket engine.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-3yYkrV\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-3yYkrV","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Study on Two-Phase Pressure Drop of Methane during Flow Boiling in Mini Channel
For LOX/LCH4 variable thrust rocket engine, the propellant methane is traditionally selected as the coolant in regenerative cooling channel (RCC). With the decrease of engine thrust, the mass flow rate of coolant methane decreases gradually. At low engine thrust, the coolant methane is usually in a subcritical state. The heat transfer deterioration of subcritical methane occurs in RCC, which may cause thrust chamber wall ablation. The two-phase pressure drop data of methane are crucial parameters for the design and optimization of RCC. But it is rarely to find such measured frictional pressure drop data of methane in open published literature. The two-phase pressure drop of methane during flow boiling in the single mini channels with the diameters of 2.0 mm are investigated systematically. Effects of the mass flux (582.19~1755.48 kg/m2·s), inlet pressure (0.56~3.55 MPa), heat flux (53.25~318.68 kW/m2) on the frictional pressure drop of methane are discussed. The results show that the frictional pressure drop of methane during flow boiling increases with mass flux and inlet pressure at the experimental conditions, and heat flux shows weak effect on the frictional pressure drop. The comparisons of the experimental data with the predicted value by existing six correlations are analyzed. Contrary to the conventional channels, homogeneous model yields better prediction than five separated flow models. Present experimental results can provide reference for the design and optimization of RCC in LOX/LCH4 rocket engine.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.