Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue
{"title":"用于退役钢轴表面损伤检测的多尺度特征融合卷积神经网络","authors":"Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue","doi":"10.1115/1.4064257","DOIUrl":null,"url":null,"abstract":"\n The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts\",\"authors\":\"Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue\",\"doi\":\"10.1115/1.4064257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064257\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064257","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts
The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping