{"title":"磁通密度分布的均匀性对通过漏磁通量法检测轨头表面缺陷的影响","authors":"O. Kara, H. H. Çelik","doi":"10.1784/insi.2023.65.12.682","DOIUrl":null,"url":null,"abstract":"Magnetic flux leakage (MFL) is a non-destructive testing method used to detect railhead surface defects. For effective MFL testing, the homogeneity of the magnetic flux density distribution (MFDD) within the railhead is crucial. Inhomogeneous formation of the MFDD within the railhead\n reduces the efficiency of the MFL testing. The homogeneity of the MFDD depends on the distance between poles (DBP) of the MFL testing system. According to the literature, as the DBP parameter increases, the MFDD becomes more homogeneous. In this study, four different homogeneity levels of\n the MFDD are introduced based on the DBP parameter. 3D finite element method (FEM) modelling simulation is conducted to obtain MFL testing analyses. The analyses are performed on a rail that contains rectangular surface defects of varying depth and length. The results of this study are evaluated\n using characteristic features of the MFL signal BX component, namely the slope of the baseline, the bottom value and the peak-to-peak value. The results show that if the homogeneity level of the MFDD within the railhead is higher, the bottom value and slope of the baseline decrease\n and the peak-to-peak value increases. This indicates that higher homogeneity of the MFDD enhances the detection efficiency of the MFL testing. Eventually, it is found that with the formation of nearly 100% homogeneous MFDD in the railhead, the slope of the baseline, the bottom value and the\n peak-to-peak value are enhanced by up to 83%, 77% and 12%, respectively.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"149 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The homogeneity effects of magnetic flux density distribution on the detection of railhead surface defects via the magnetic flux leakage method\",\"authors\":\"O. Kara, H. H. Çelik\",\"doi\":\"10.1784/insi.2023.65.12.682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic flux leakage (MFL) is a non-destructive testing method used to detect railhead surface defects. For effective MFL testing, the homogeneity of the magnetic flux density distribution (MFDD) within the railhead is crucial. Inhomogeneous formation of the MFDD within the railhead\\n reduces the efficiency of the MFL testing. The homogeneity of the MFDD depends on the distance between poles (DBP) of the MFL testing system. According to the literature, as the DBP parameter increases, the MFDD becomes more homogeneous. In this study, four different homogeneity levels of\\n the MFDD are introduced based on the DBP parameter. 3D finite element method (FEM) modelling simulation is conducted to obtain MFL testing analyses. The analyses are performed on a rail that contains rectangular surface defects of varying depth and length. The results of this study are evaluated\\n using characteristic features of the MFL signal BX component, namely the slope of the baseline, the bottom value and the peak-to-peak value. The results show that if the homogeneity level of the MFDD within the railhead is higher, the bottom value and slope of the baseline decrease\\n and the peak-to-peak value increases. This indicates that higher homogeneity of the MFDD enhances the detection efficiency of the MFL testing. Eventually, it is found that with the formation of nearly 100% homogeneous MFDD in the railhead, the slope of the baseline, the bottom value and the\\n peak-to-peak value are enhanced by up to 83%, 77% and 12%, respectively.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"149 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.12.682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.12.682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The homogeneity effects of magnetic flux density distribution on the detection of railhead surface defects via the magnetic flux leakage method
Magnetic flux leakage (MFL) is a non-destructive testing method used to detect railhead surface defects. For effective MFL testing, the homogeneity of the magnetic flux density distribution (MFDD) within the railhead is crucial. Inhomogeneous formation of the MFDD within the railhead
reduces the efficiency of the MFL testing. The homogeneity of the MFDD depends on the distance between poles (DBP) of the MFL testing system. According to the literature, as the DBP parameter increases, the MFDD becomes more homogeneous. In this study, four different homogeneity levels of
the MFDD are introduced based on the DBP parameter. 3D finite element method (FEM) modelling simulation is conducted to obtain MFL testing analyses. The analyses are performed on a rail that contains rectangular surface defects of varying depth and length. The results of this study are evaluated
using characteristic features of the MFL signal BX component, namely the slope of the baseline, the bottom value and the peak-to-peak value. The results show that if the homogeneity level of the MFDD within the railhead is higher, the bottom value and slope of the baseline decrease
and the peak-to-peak value increases. This indicates that higher homogeneity of the MFDD enhances the detection efficiency of the MFL testing. Eventually, it is found that with the formation of nearly 100% homogeneous MFDD in the railhead, the slope of the baseline, the bottom value and the
peak-to-peak value are enhanced by up to 83%, 77% and 12%, respectively.