{"title":"宽温度范围循环中轴用聚四氟乙烯油封的变形机理和尺寸优化方法","authors":"Yangtao Xing, Fugang Zhai, Shengnan Li, Peng Gui","doi":"10.1108/ilt-05-2023-0142","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to study the deformation mechanism of polytetrafluoroethylene (PTFE) oil seal under a wide temperature range cycle.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study categorizes the oil seal operation into three states: assembly, heating-up and cooling. The deformation equation for the oil seal is developed for each state, considering the continuity between them. The investigation of the oil seal’s deformation trends and mechanisms is performed using the ANSYS Workbench.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The assembling process results in a radial shrinkage of the skeleton, causing the centroid to move toward the axis. During heating-up, the outer diameter of the skeleton slightly expands, whereas the inner diameter sharply contracts toward the axis, leading to a further reduction in the centroid’s distance from the axis. Upon cooling, both the inner and outer diameters continue to contract toward the axis, causing the centroid to persist in its movement toward the axis. Consequently, after undergoing a heating-up and cooling cycle ranging from 20°C to 180°C, the outer diameter of the PTFE oil seal reduces by 0.92 mm from its original deformation, ensuring minimal contact between the skeleton and housing. As a result of the reduced static friction torque at the skeleton, the oil seal rotates along the shaft.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The deformation mechanism of PTFE oil seals under a wide temperature range cycle was investigated, aiming to address the concerns related to the rotation along the shaft and leakage.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0142/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"251 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation mechanism and dimension optimization methods of PTFE oil seals for shafts in a wide temperature range cycle\",\"authors\":\"Yangtao Xing, Fugang Zhai, Shengnan Li, Peng Gui\",\"doi\":\"10.1108/ilt-05-2023-0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to study the deformation mechanism of polytetrafluoroethylene (PTFE) oil seal under a wide temperature range cycle.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study categorizes the oil seal operation into three states: assembly, heating-up and cooling. The deformation equation for the oil seal is developed for each state, considering the continuity between them. The investigation of the oil seal’s deformation trends and mechanisms is performed using the ANSYS Workbench.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The assembling process results in a radial shrinkage of the skeleton, causing the centroid to move toward the axis. During heating-up, the outer diameter of the skeleton slightly expands, whereas the inner diameter sharply contracts toward the axis, leading to a further reduction in the centroid’s distance from the axis. Upon cooling, both the inner and outer diameters continue to contract toward the axis, causing the centroid to persist in its movement toward the axis. Consequently, after undergoing a heating-up and cooling cycle ranging from 20°C to 180°C, the outer diameter of the PTFE oil seal reduces by 0.92 mm from its original deformation, ensuring minimal contact between the skeleton and housing. As a result of the reduced static friction torque at the skeleton, the oil seal rotates along the shaft.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The deformation mechanism of PTFE oil seals under a wide temperature range cycle was investigated, aiming to address the concerns related to the rotation along the shaft and leakage.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0142/</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-05-2023-0142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-05-2023-0142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Deformation mechanism and dimension optimization methods of PTFE oil seals for shafts in a wide temperature range cycle
Purpose
This paper aims to study the deformation mechanism of polytetrafluoroethylene (PTFE) oil seal under a wide temperature range cycle.
Design/methodology/approach
This study categorizes the oil seal operation into three states: assembly, heating-up and cooling. The deformation equation for the oil seal is developed for each state, considering the continuity between them. The investigation of the oil seal’s deformation trends and mechanisms is performed using the ANSYS Workbench.
Findings
The assembling process results in a radial shrinkage of the skeleton, causing the centroid to move toward the axis. During heating-up, the outer diameter of the skeleton slightly expands, whereas the inner diameter sharply contracts toward the axis, leading to a further reduction in the centroid’s distance from the axis. Upon cooling, both the inner and outer diameters continue to contract toward the axis, causing the centroid to persist in its movement toward the axis. Consequently, after undergoing a heating-up and cooling cycle ranging from 20°C to 180°C, the outer diameter of the PTFE oil seal reduces by 0.92 mm from its original deformation, ensuring minimal contact between the skeleton and housing. As a result of the reduced static friction torque at the skeleton, the oil seal rotates along the shaft.
Originality/value
The deformation mechanism of PTFE oil seals under a wide temperature range cycle was investigated, aiming to address the concerns related to the rotation along the shaft and leakage.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0142/
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.