CMA-GD 模型在预测中国湖北风电场风速方面的性能

IF 1.5 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES 热带气象学报 Pub Date : 2023-12-01 DOI:10.3724/j.1006-8775.2023.035
Pei-hua Xu, Chi Cheng, Wen Wang, Zheng-hong Chen, Shui-xin Zhong, Yan-xia Zhang
{"title":"CMA-GD 模型在预测中国湖北风电场风速方面的性能","authors":"Pei-hua Xu, Chi Cheng, Wen Wang, Zheng-hong Chen, Shui-xin Zhong, Yan-xia Zhang","doi":"10.3724/j.1006-8775.2023.035","DOIUrl":null,"url":null,"abstract":": This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province, China. The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing. At the same time, the wind speed predicted by the EC model is also included for comparative analysis. The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A. The CMA-GD model exhibits a monthly average correlation coefficient of 0.56, root mean square error of 2.72 m s –1 , and average absolute error of 2.11 m s –1 . In contrast, the EC model shows a monthly average correlation coefficient of 0.51, root mean square error of 2.83 m s –1 , and average absolute error of 2.21 m s –1 . Conversely, in Wind Farm B, the EC model outperforms the CMA-GD model. The CMA-GD model achieves a monthly average correlation coefficient of 0.55, root mean square error of 2.61 m s –1 , and average absolute error of 2.13 m s –1 . By contrast, the EC model displays a monthly average correlation coefficient of 0.63, root mean square error of 2.04 m s –1 , and average absolute error of 1.67 m s –1 .","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China\",\"authors\":\"Pei-hua Xu, Chi Cheng, Wen Wang, Zheng-hong Chen, Shui-xin Zhong, Yan-xia Zhang\",\"doi\":\"10.3724/j.1006-8775.2023.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province, China. The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing. At the same time, the wind speed predicted by the EC model is also included for comparative analysis. The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A. The CMA-GD model exhibits a monthly average correlation coefficient of 0.56, root mean square error of 2.72 m s –1 , and average absolute error of 2.11 m s –1 . In contrast, the EC model shows a monthly average correlation coefficient of 0.51, root mean square error of 2.83 m s –1 , and average absolute error of 2.21 m s –1 . Conversely, in Wind Farm B, the EC model outperforms the CMA-GD model. The CMA-GD model achieves a monthly average correlation coefficient of 0.55, root mean square error of 2.61 m s –1 , and average absolute error of 2.13 m s –1 . By contrast, the EC model displays a monthly average correlation coefficient of 0.63, root mean square error of 2.04 m s –1 , and average absolute error of 1.67 m s –1 .\",\"PeriodicalId\":17432,\"journal\":{\"name\":\"热带气象学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"热带气象学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3724/j.1006-8775.2023.035\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3724/j.1006-8775.2023.035","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

:本研究评估了 CMA-GD 模型在中国湖北省两个风电场的风速预测能力。随州两个风电场的风机在 70 米高空的风速观测数据作为实际观测数据进行比较和测试。同时,EC 模型预测的风速也被纳入对比分析。结果表明,在 A 风场,CMA-GD 模型的性能优于 EC 模型。CMA-GD 模型的月平均相关系数为 0.56,均方根误差为 2.72 m s -1 ,平均绝对误差为 2.11 m s -1 。相比之下,EC 模式的月平均相关系数为 0.51,均方根误差为 2.83 m s -1 ,平均绝对误差为 2.21 m s -1 。相反,在风电场 B 中,EC 模型优于 CMA-GD 模型。CMA-GD 模型的月平均相关系数为 0.55,均方根误差为 2.61 m s -1 ,平均绝对误差为 2.13 m s -1 。相比之下,EC 模式的月平均相关系数为 0.63,均方根误差为 2.04 m s -1 ,平均绝对误差为 1.67 m s -1 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China
: This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province, China. The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing. At the same time, the wind speed predicted by the EC model is also included for comparative analysis. The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A. The CMA-GD model exhibits a monthly average correlation coefficient of 0.56, root mean square error of 2.72 m s –1 , and average absolute error of 2.11 m s –1 . In contrast, the EC model shows a monthly average correlation coefficient of 0.51, root mean square error of 2.83 m s –1 , and average absolute error of 2.21 m s –1 . Conversely, in Wind Farm B, the EC model outperforms the CMA-GD model. The CMA-GD model achieves a monthly average correlation coefficient of 0.55, root mean square error of 2.61 m s –1 , and average absolute error of 2.13 m s –1 . By contrast, the EC model displays a monthly average correlation coefficient of 0.63, root mean square error of 2.04 m s –1 , and average absolute error of 1.67 m s –1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
热带气象学报
热带气象学报 METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.80
自引率
8.30%
发文量
2793
审稿时长
6-12 weeks
期刊介绍: Information not localized
期刊最新文献
Correcting Black Carbon Absorption Measurements with Micro-aethalometer Model 200: Insights from Comparative Analysis Improved Weather Radar Echo Extrapolation Through Wind Speed Data Fusion Using a New Spatiotemporal Neural Network Model Interannual Variation and Statistical Prediction of Summer Dry and Hot Days in South China from 1970 to 2018 Observational and Mechanistic Analysis of a Nighttime Warm-Sector Heavy Rainfall Event Within the Subtropical High over the Southeastern Coast of China Adaptive Wind Gust and Associated Gust-factor Model for the Gust-producing Weather over the Northern South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1