高抖动、极速现象成像:快门滞后的补救措施

Noah Hoppis, Kathryn M. Sturge, Jonathan E. Barney, Brian L. Beaudoin, Ariana M. Bussio, Ashley E. Hammell, Samuel L. Henderson, James E. Krutzler, Joseph P. Lichthardt, Alexander H. Mueller, Karl Smith, Bryce C. Tappan, Timothy W. Koeth
{"title":"高抖动、极速现象成像:快门滞后的补救措施","authors":"Noah Hoppis, Kathryn M. Sturge, Jonathan E. Barney, Brian L. Beaudoin, Ariana M. Bussio, Ashley E. Hammell, Samuel L. Henderson, James E. Krutzler, Joseph P. Lichthardt, Alexander H. Mueller, Karl Smith, Bryce C. Tappan, Timothy W. Koeth","doi":"arxiv-2312.13902","DOIUrl":null,"url":null,"abstract":"Dielectric breakdown is an example of a natural phenomenon that occurs on\nvery short time scales, making it incredibly difficult to capture optical\nimages of the process. Event initiation jitter is one of the primary\nchallenges, as even a microsecond of jitter time can cause the imaging attempt\nto fail. Initial attempts to capture images of dielectric breakdown with a\ngigahertz frame rate camera and an exploding bridge wire initiation were\nstymied by high initiation jitter. Subsequently, a novel optical delay line\napparatus was developed in order to effectively circumvent the jitter and\nreliably image dielectric breakdown. The design and performance of the optical\ndelay line apparatus are presented. The optical delay line increased the image\ncapture success rate from 25% to 94% while also permitting enhanced temporal\nresolution and has applications for use in imaging other high-jitter, extremely\nfast phenomena.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging High Jitter, Very Fast Phenomena: A Remedy for Shutter Lag\",\"authors\":\"Noah Hoppis, Kathryn M. Sturge, Jonathan E. Barney, Brian L. Beaudoin, Ariana M. Bussio, Ashley E. Hammell, Samuel L. Henderson, James E. Krutzler, Joseph P. Lichthardt, Alexander H. Mueller, Karl Smith, Bryce C. Tappan, Timothy W. Koeth\",\"doi\":\"arxiv-2312.13902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dielectric breakdown is an example of a natural phenomenon that occurs on\\nvery short time scales, making it incredibly difficult to capture optical\\nimages of the process. Event initiation jitter is one of the primary\\nchallenges, as even a microsecond of jitter time can cause the imaging attempt\\nto fail. Initial attempts to capture images of dielectric breakdown with a\\ngigahertz frame rate camera and an exploding bridge wire initiation were\\nstymied by high initiation jitter. Subsequently, a novel optical delay line\\napparatus was developed in order to effectively circumvent the jitter and\\nreliably image dielectric breakdown. The design and performance of the optical\\ndelay line apparatus are presented. The optical delay line increased the image\\ncapture success rate from 25% to 94% while also permitting enhanced temporal\\nresolution and has applications for use in imaging other high-jitter, extremely\\nfast phenomena.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.13902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.13902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介质击穿是自然现象的一个例子,它发生的时间尺度非常短,因此很难捕捉到这一过程的光学图像。事件开始时的抖动是主要挑战之一,因为即使是一微秒的抖动时间也会导致成像尝试失败。最初尝试用千亿赫兹帧频相机捕捉介质击穿图像和爆炸桥丝启动图像时,由于启动抖动过高而失败。随后,我们开发了一种新型光延迟线装置,以有效规避抖动并可靠地拍摄介质击穿图像。本文介绍了光延迟线装置的设计和性能。该光学延迟线将图像捕获成功率从 25% 提高到 94%,同时还允许增强时间分辨率,并可应用于其他高抖动、极快现象的成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imaging High Jitter, Very Fast Phenomena: A Remedy for Shutter Lag
Dielectric breakdown is an example of a natural phenomenon that occurs on very short time scales, making it incredibly difficult to capture optical images of the process. Event initiation jitter is one of the primary challenges, as even a microsecond of jitter time can cause the imaging attempt to fail. Initial attempts to capture images of dielectric breakdown with a gigahertz frame rate camera and an exploding bridge wire initiation were stymied by high initiation jitter. Subsequently, a novel optical delay line apparatus was developed in order to effectively circumvent the jitter and reliably image dielectric breakdown. The design and performance of the optical delay line apparatus are presented. The optical delay line increased the image capture success rate from 25% to 94% while also permitting enhanced temporal resolution and has applications for use in imaging other high-jitter, extremely fast phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Label-Free Microscopy Characterization of Dielectric Nanoparticles Enwrapped Perylene Bisimide Enables Room Temperature Polariton Lasing and Photonic Lattices Chiral patterning of rough surfaces with vortex laser beams: from structured polarization to twisted forces Scaling of pseudospectra in exponentially sensitive lattices Surface Phonon Polariton Ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1