{"title":"嵌入式世界与人工智能","authors":"Mostafa Haghir Chehreghani","doi":"10.1016/j.cogsys.2023.101201","DOIUrl":null,"url":null,"abstract":"<div><p><span>From early days, a key and controversial question inside the artificial intelligence community was whether </span>Artificial General Intelligence (AGI) is achievable. AGI is the ability of machines and computer programs to achieve human-level intelligence and do all tasks that a human being can. While there exist a number of systems in the literature claiming they realize AGI, several other researchers argue that it is impossible to achieve it.</p><p><span>In this paper, we take a different view to the problem. First, we discuss that in order to realize AGI, along with building intelligent machines and programs, an intelligent world should also be constructed which is on the one hand, an accurate approximation of our world and on the other hand, a significant part of reasoning of intelligent machines is already embedded in this world. Then we discuss that AGI is not a product or algorithm, rather it is a continuous process which will become more and more mature over time (like human civilization and wisdom). Then, we argue that pre-trained embeddings play a key role in building this intelligent world and as a result, realizing AGI. We discuss how pre-trained embeddings facilitate achieving several characteristics of human-level intelligence, such as embodiment, </span>common sense knowledge, unconscious knowledge and continuality of learning, by machines.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"84 ","pages":"Article 101201"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The embeddings world and Artificial General Intelligence\",\"authors\":\"Mostafa Haghir Chehreghani\",\"doi\":\"10.1016/j.cogsys.2023.101201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>From early days, a key and controversial question inside the artificial intelligence community was whether </span>Artificial General Intelligence (AGI) is achievable. AGI is the ability of machines and computer programs to achieve human-level intelligence and do all tasks that a human being can. While there exist a number of systems in the literature claiming they realize AGI, several other researchers argue that it is impossible to achieve it.</p><p><span>In this paper, we take a different view to the problem. First, we discuss that in order to realize AGI, along with building intelligent machines and programs, an intelligent world should also be constructed which is on the one hand, an accurate approximation of our world and on the other hand, a significant part of reasoning of intelligent machines is already embedded in this world. Then we discuss that AGI is not a product or algorithm, rather it is a continuous process which will become more and more mature over time (like human civilization and wisdom). Then, we argue that pre-trained embeddings play a key role in building this intelligent world and as a result, realizing AGI. We discuss how pre-trained embeddings facilitate achieving several characteristics of human-level intelligence, such as embodiment, </span>common sense knowledge, unconscious knowledge and continuality of learning, by machines.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"84 \",\"pages\":\"Article 101201\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041723001353\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041723001353","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The embeddings world and Artificial General Intelligence
From early days, a key and controversial question inside the artificial intelligence community was whether Artificial General Intelligence (AGI) is achievable. AGI is the ability of machines and computer programs to achieve human-level intelligence and do all tasks that a human being can. While there exist a number of systems in the literature claiming they realize AGI, several other researchers argue that it is impossible to achieve it.
In this paper, we take a different view to the problem. First, we discuss that in order to realize AGI, along with building intelligent machines and programs, an intelligent world should also be constructed which is on the one hand, an accurate approximation of our world and on the other hand, a significant part of reasoning of intelligent machines is already embedded in this world. Then we discuss that AGI is not a product or algorithm, rather it is a continuous process which will become more and more mature over time (like human civilization and wisdom). Then, we argue that pre-trained embeddings play a key role in building this intelligent world and as a result, realizing AGI. We discuss how pre-trained embeddings facilitate achieving several characteristics of human-level intelligence, such as embodiment, common sense knowledge, unconscious knowledge and continuality of learning, by machines.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.