Jun-Hee Lee , Ju-Han Lee , Myeong-Min Kim , Dohan Oh , Kwang-Jun Paik
{"title":"关于喷射推进器狭缝形状优化的数值研究","authors":"Jun-Hee Lee , Ju-Han Lee , Myeong-Min Kim , Dohan Oh , Kwang-Jun Paik","doi":"10.1016/j.ijnaoe.2023.100578","DOIUrl":null,"url":null,"abstract":"<div><p>The shape of the slit that injects the jet from the surface of the propeller was optimized through numerical computations. The high-pressure drop on the propeller surface caused by jet injection could be improved by modifying the hydrofoil geometry of the propeller. As the cover length increased and the slit was located at the center of the propeller, the volume of jets leading to the trailing edge increased, and the propulsion performance was improved. As the height of the slit increased, the thrust increased due to the Coanda effect, and the torque decreased because of the thrust of the jet. The jet injection pattern differed according to the area of the slit and tunnel, which caused a difference in the propeller performance. The jet pattern changed according to the area of the slit and tunnel, leading to a change in propeller performance. It was effective in improving the efficiency by injecting from as wide an area as possible, and the efficiency was improved by approximately 2 % considering the pump efficiency through optimization of the slit shape.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100578"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678223000675/pdfft?md5=8318a7286ca15e40bdb33e1870d13c8f&pid=1-s2.0-S2092678223000675-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A numerical study on the optimization of the slit shape of a jet injection propeller\",\"authors\":\"Jun-Hee Lee , Ju-Han Lee , Myeong-Min Kim , Dohan Oh , Kwang-Jun Paik\",\"doi\":\"10.1016/j.ijnaoe.2023.100578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The shape of the slit that injects the jet from the surface of the propeller was optimized through numerical computations. The high-pressure drop on the propeller surface caused by jet injection could be improved by modifying the hydrofoil geometry of the propeller. As the cover length increased and the slit was located at the center of the propeller, the volume of jets leading to the trailing edge increased, and the propulsion performance was improved. As the height of the slit increased, the thrust increased due to the Coanda effect, and the torque decreased because of the thrust of the jet. The jet injection pattern differed according to the area of the slit and tunnel, which caused a difference in the propeller performance. The jet pattern changed according to the area of the slit and tunnel, leading to a change in propeller performance. It was effective in improving the efficiency by injecting from as wide an area as possible, and the efficiency was improved by approximately 2 % considering the pump efficiency through optimization of the slit shape.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"16 \",\"pages\":\"Article 100578\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2092678223000675/pdfft?md5=8318a7286ca15e40bdb33e1870d13c8f&pid=1-s2.0-S2092678223000675-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678223000675\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000675","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A numerical study on the optimization of the slit shape of a jet injection propeller
The shape of the slit that injects the jet from the surface of the propeller was optimized through numerical computations. The high-pressure drop on the propeller surface caused by jet injection could be improved by modifying the hydrofoil geometry of the propeller. As the cover length increased and the slit was located at the center of the propeller, the volume of jets leading to the trailing edge increased, and the propulsion performance was improved. As the height of the slit increased, the thrust increased due to the Coanda effect, and the torque decreased because of the thrust of the jet. The jet injection pattern differed according to the area of the slit and tunnel, which caused a difference in the propeller performance. The jet pattern changed according to the area of the slit and tunnel, leading to a change in propeller performance. It was effective in improving the efficiency by injecting from as wide an area as possible, and the efficiency was improved by approximately 2 % considering the pump efficiency through optimization of the slit shape.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.