通过智能手机应用程序和基于傅立叶变换红外光谱的多元建模估算山苍子叶片葡萄糖含量

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Vibrational Spectroscopy Pub Date : 2023-12-22 DOI:10.1016/j.vibspec.2023.103643
V Arunachalam, Diksha C Salgaonkar, Satvashil S Devidas, Bappa Das
{"title":"通过智能手机应用程序和基于傅立叶变换红外光谱的多元建模估算山苍子叶片葡萄糖含量","authors":"V Arunachalam, Diksha C Salgaonkar, Satvashil S Devidas, Bappa Das","doi":"10.1016/j.vibspec.2023.103643","DOIUrl":null,"url":null,"abstract":"<p>Carbohydrates are essential molecules in the metabolism of plant systems whose quantification is crucial. The study aims to estimate foliar glucose content using the Smartphone-based Color Grab app by color change upon reaction with a 3,5-dinitrosalicylic acid reagent and mid-infrared spectra. The hue showed a negative correlation of -0.959 with glucose content with sensitivity, detection limit and precision of 13.46<!-- --> <!-- -->μg/mL, 0.035<!-- --> <!-- -->μg/mL, and 0.229% respectively. The glucose concentration to color coordinates displayed a linear response between 50 to 600<!-- --> <!-- -->µg/mL. The linear regression equation with hue of standards was used to predict spectrophotometrically measured glucose concentration of leaf extracts with R<sup>2</sup> = 0.934 and sensitivity of 13.46<!-- --> <!-- -->μg/mL. Multivariate analysis of infrared spectrum (650-4000<!-- --> <!-- -->cm<sup>-1</sup>) of powdered arecanut leaves indicated elastic net and partial least square regression as the best models with R<sup>2</sup> of 0.99. The study has practical implications in smartphone or infrared spectra-based glucose measurements for low glucose (&lt; 1<!-- --> <!-- -->mg/mL) samples.</p>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of foliar glucose content of areca palm by a smartphone app and Fourier transform infrared spectroscopy based multivariate modeling\",\"authors\":\"V Arunachalam, Diksha C Salgaonkar, Satvashil S Devidas, Bappa Das\",\"doi\":\"10.1016/j.vibspec.2023.103643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbohydrates are essential molecules in the metabolism of plant systems whose quantification is crucial. The study aims to estimate foliar glucose content using the Smartphone-based Color Grab app by color change upon reaction with a 3,5-dinitrosalicylic acid reagent and mid-infrared spectra. The hue showed a negative correlation of -0.959 with glucose content with sensitivity, detection limit and precision of 13.46<!-- --> <!-- -->μg/mL, 0.035<!-- --> <!-- -->μg/mL, and 0.229% respectively. The glucose concentration to color coordinates displayed a linear response between 50 to 600<!-- --> <!-- -->µg/mL. The linear regression equation with hue of standards was used to predict spectrophotometrically measured glucose concentration of leaf extracts with R<sup>2</sup> = 0.934 and sensitivity of 13.46<!-- --> <!-- -->μg/mL. Multivariate analysis of infrared spectrum (650-4000<!-- --> <!-- -->cm<sup>-1</sup>) of powdered arecanut leaves indicated elastic net and partial least square regression as the best models with R<sup>2</sup> of 0.99. The study has practical implications in smartphone or infrared spectra-based glucose measurements for low glucose (&lt; 1<!-- --> <!-- -->mg/mL) samples.</p>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.vibspec.2023.103643\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.vibspec.2023.103643","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳水化合物是植物系统新陈代谢中的重要分子,其定量至关重要。本研究旨在使用基于智能手机的 Color Grab 应用程序,通过与 3,5-二硝基水杨酸试剂反应后的颜色变化和中红外光谱来估算叶片葡萄糖含量。色调与葡萄糖含量的负相关性为-0.959,灵敏度、检测限和精度分别为 13.46 μg/mL、0.035 μg/mL 和 0.229%。葡萄糖浓度与颜色坐标在 50 至 600 微克/毫升之间呈线性响应。用标准色调的线性回归方程来预测分光光度法测得的叶提取物葡萄糖浓度,R2 = 0.934,灵敏度为 13.46 μg/mL。对油菜叶粉的红外光谱(650-4000 cm-1)进行的多元分析表明,弹性网和部分最小二乘回归是最佳模型,R2 为 0.99。这项研究对于用智能手机或红外光谱测量低血糖(< 1 mg/mL)样本的葡萄糖具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of foliar glucose content of areca palm by a smartphone app and Fourier transform infrared spectroscopy based multivariate modeling

Carbohydrates are essential molecules in the metabolism of plant systems whose quantification is crucial. The study aims to estimate foliar glucose content using the Smartphone-based Color Grab app by color change upon reaction with a 3,5-dinitrosalicylic acid reagent and mid-infrared spectra. The hue showed a negative correlation of -0.959 with glucose content with sensitivity, detection limit and precision of 13.46 μg/mL, 0.035 μg/mL, and 0.229% respectively. The glucose concentration to color coordinates displayed a linear response between 50 to 600 µg/mL. The linear regression equation with hue of standards was used to predict spectrophotometrically measured glucose concentration of leaf extracts with R2 = 0.934 and sensitivity of 13.46 μg/mL. Multivariate analysis of infrared spectrum (650-4000 cm-1) of powdered arecanut leaves indicated elastic net and partial least square regression as the best models with R2 of 0.99. The study has practical implications in smartphone or infrared spectra-based glucose measurements for low glucose (< 1 mg/mL) samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
期刊最新文献
Diagnosis of corn leaf diseases by FTIR spectroscopy combined with machine learning Evaluating the thermal stability of hazelnut oil in comparison with common edible oils in Turkey using ATR infrared spectroscopy New insights of emerald geographic origin determination based on the infrared spectroscopy of D2O and HDO molecules Use of a rugged mid-infrared spectrometer for in situ process analysis of liquids Discovery of calcium sulfate at different hydration states on Mars - based on perseverance SHERLOC analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1